__________ sin(x)*\/ cos(2*x)
d / __________\ --\sin(x)*\/ cos(2*x) / dx
Apply the product rule:
; to find :
The derivative of sine is cosine:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
__________ sin(x)*sin(2*x) \/ cos(2*x) *cos(x) - --------------- __________ \/ cos(2*x)
/ / 2 \ \ | __________ | __________ sin (2*x) | 2*cos(x)*sin(2*x)| -|\/ cos(2*x) *sin(x) + |2*\/ cos(2*x) + -----------|*sin(x) + -----------------| | | 3/2 | __________ | \ \ cos (2*x)/ \/ cos(2*x) /
/ 2 \ | 3*sin (2*x)| |2 + -----------|*sin(x)*sin(2*x) / 2 \ | 2 | __________ | __________ sin (2*x) | 3*sin(x)*sin(2*x) \ cos (2*x) / - \/ cos(2*x) *cos(x) - 3*|2*\/ cos(2*x) + -----------|*cos(x) + ----------------- - --------------------------------- | 3/2 | __________ __________ \ cos (2*x)/ \/ cos(2*x) \/ cos(2*x)