Mister Exam

Derivative of y(x)=sinx√cos2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         __________
sin(x)*\/ cos(2*x) 
$$\sin{\left(x \right)} \sqrt{\cos{\left(2 x \right)}}$$
d /         __________\
--\sin(x)*\/ cos(2*x) /
dx                     
$$\frac{d}{d x} \sin{\left(x \right)} \sqrt{\cos{\left(2 x \right)}}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of sine is cosine:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  __________          sin(x)*sin(2*x)
\/ cos(2*x) *cos(x) - ---------------
                          __________ 
                        \/ cos(2*x)  
$$\cos{\left(x \right)} \sqrt{\cos{\left(2 x \right)}} - \frac{\sin{\left(x \right)} \sin{\left(2 x \right)}}{\sqrt{\cos{\left(2 x \right)}}}$$
The second derivative [src]
 /                      /                     2      \                           \
 |  __________          |    __________    sin (2*x) |          2*cos(x)*sin(2*x)|
-|\/ cos(2*x) *sin(x) + |2*\/ cos(2*x)  + -----------|*sin(x) + -----------------|
 |                      |                    3/2     |               __________  |
 \                      \                 cos   (2*x)/             \/ cos(2*x)   /
$$- (\left(2 \sqrt{\cos{\left(2 x \right)}} + \frac{\sin^{2}{\left(2 x \right)}}{\cos^{\frac{3}{2}}{\left(2 x \right)}}\right) \sin{\left(x \right)} + \sin{\left(x \right)} \sqrt{\cos{\left(2 x \right)}} + \frac{2 \sin{\left(2 x \right)} \cos{\left(x \right)}}{\sqrt{\cos{\left(2 x \right)}}})$$
The third derivative [src]
                                                                                      /         2     \                
                                                                                      |    3*sin (2*x)|                
                                                                                      |2 + -----------|*sin(x)*sin(2*x)
                          /                     2      \                              |        2      |                
    __________            |    __________    sin (2*x) |          3*sin(x)*sin(2*x)   \     cos (2*x) /                
- \/ cos(2*x) *cos(x) - 3*|2*\/ cos(2*x)  + -----------|*cos(x) + ----------------- - ---------------------------------
                          |                    3/2     |               __________                  __________          
                          \                 cos   (2*x)/             \/ cos(2*x)                 \/ cos(2*x)           
$$- \frac{\left(\frac{3 \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + 2\right) \sin{\left(x \right)} \sin{\left(2 x \right)}}{\sqrt{\cos{\left(2 x \right)}}} - 3 \left(2 \sqrt{\cos{\left(2 x \right)}} + \frac{\sin^{2}{\left(2 x \right)}}{\cos^{\frac{3}{2}}{\left(2 x \right)}}\right) \cos{\left(x \right)} - \cos{\left(x \right)} \sqrt{\cos{\left(2 x \right)}} + \frac{3 \sin{\left(x \right)} \sin{\left(2 x \right)}}{\sqrt{\cos{\left(2 x \right)}}}$$
The graph
Derivative of y(x)=sinx√cos2x