Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- 4 \sin{\left(x \right)} \cos^{3}{\left(x \right)}$$
The second derivative
[src]
2 / 2 2 \
4*cos (x)*\- cos (x) + 3*sin (x)/
$$4 \cdot \left(3 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)}$$
The third derivative
[src]
/ 2 2 \
8*\- 3*sin (x) + 5*cos (x)/*cos(x)*sin(x)
$$8 \left(- 3 \sin^{2}{\left(x \right)} + 5 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(x \right)}$$