Mister Exam

Other calculators


x^3/(x^2-x+1)

You entered:

x^3/(x^2-x+1)

What you mean?

Derivative of x^3/(x^2-x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     3    
    x     
----------
 2        
x  - x + 1
$$\frac{x^{3}}{x^{2} - x + 1}$$
  /     3    \
d |    x     |
--|----------|
dx| 2        |
  \x  - x + 1/
$$\frac{d}{d x} \frac{x^{3}}{x^{2} - x + 1}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      3. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      2        3          
   3*x        x *(1 - 2*x)
---------- + -------------
 2                       2
x  - x + 1   / 2        \ 
             \x  - x + 1/ 
$$\frac{x^{3} \cdot \left(1 - 2 x\right)}{\left(x^{2} - x + 1\right)^{2}} + \frac{3 x^{2}}{x^{2} - x + 1}$$
The second derivative [src]
    /       /               2\                 \
    |     2 |     (-1 + 2*x) |                 |
    |    x *|-1 + -----------|                 |
    |       |           2    |                 |
    |       \      1 + x  - x/   3*x*(-1 + 2*x)|
2*x*|3 + --------------------- - --------------|
    |               2                   2      |
    \          1 + x  - x          1 + x  - x  /
------------------------------------------------
                        2                       
                   1 + x  - x                   
$$\frac{2 x \left(\frac{x^{2} \left(\frac{\left(2 x - 1\right)^{2}}{x^{2} - x + 1} - 1\right)}{x^{2} - x + 1} - \frac{3 x \left(2 x - 1\right)}{x^{2} - x + 1} + 3\right)}{x^{2} - x + 1}$$
The third derivative [src]
  /                          /               2\                 /               2\\
  |                        2 |     (-1 + 2*x) |    3            |     (-1 + 2*x) ||
  |                     3*x *|-1 + -----------|   x *(-1 + 2*x)*|-2 + -----------||
  |                          |           2    |                 |           2    ||
  |    3*x*(-1 + 2*x)        \      1 + x  - x/                 \      1 + x  - x/|
6*|1 - -------------- + ----------------------- - --------------------------------|
  |           2                     2                                  2          |
  |      1 + x  - x            1 + x  - x                  /     2    \           |
  \                                                        \1 + x  - x/           /
-----------------------------------------------------------------------------------
                                          2                                        
                                     1 + x  - x                                    
$$\frac{6 \left(- \frac{x^{3} \cdot \left(2 x - 1\right) \left(\frac{\left(2 x - 1\right)^{2}}{x^{2} - x + 1} - 2\right)}{\left(x^{2} - x + 1\right)^{2}} + \frac{3 x^{2} \left(\frac{\left(2 x - 1\right)^{2}}{x^{2} - x + 1} - 1\right)}{x^{2} - x + 1} - \frac{3 x \left(2 x - 1\right)}{x^{2} - x + 1} + 1\right)}{x^{2} - x + 1}$$
The graph
Derivative of x^3/(x^2-x+1)