x^3/(x^2-x+1)
3
x
----------
2
x - x + 1
/ 3 \ d | x | --|----------| dx| 2 | \x - x + 1/
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 3
3*x x *(1 - 2*x)
---------- + -------------
2 2
x - x + 1 / 2 \
\x - x + 1/
/ / 2\ \
| 2 | (-1 + 2*x) | |
| x *|-1 + -----------| |
| | 2 | |
| \ 1 + x - x/ 3*x*(-1 + 2*x)|
2*x*|3 + --------------------- - --------------|
| 2 2 |
\ 1 + x - x 1 + x - x /
------------------------------------------------
2
1 + x - x
/ / 2\ / 2\\
| 2 | (-1 + 2*x) | 3 | (-1 + 2*x) ||
| 3*x *|-1 + -----------| x *(-1 + 2*x)*|-2 + -----------||
| | 2 | | 2 ||
| 3*x*(-1 + 2*x) \ 1 + x - x/ \ 1 + x - x/|
6*|1 - -------------- + ----------------------- - --------------------------------|
| 2 2 2 |
| 1 + x - x 1 + x - x / 2 \ |
\ \1 + x - x/ /
-----------------------------------------------------------------------------------
2
1 + x - x