Mister Exam

Derivative of y(x)=-4sin4x+3ctg4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
-4*sin(4*x) + 3*cot(4*x)
4sin(4x)+3cot(4x)- 4 \sin{\left(4 x \right)} + 3 \cot{\left(4 x \right)}
-4*sin(4*x) + 3*cot(4*x)
Detail solution
  1. Differentiate 4sin(4x)+3cot(4x)- 4 \sin{\left(4 x \right)} + 3 \cot{\left(4 x \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=4xu = 4 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        The result of the chain rule is:

        4cos(4x)4 \cos{\left(4 x \right)}

      So, the result is: 16cos(4x)- 16 \cos{\left(4 x \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

          cot(4x)=1tan(4x)\cot{\left(4 x \right)} = \frac{1}{\tan{\left(4 x \right)}}

        2. Let u=tan(4x)u = \tan{\left(4 x \right)}.

        3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

        4. Then, apply the chain rule. Multiply by ddxtan(4x)\frac{d}{d x} \tan{\left(4 x \right)}:

          1. Rewrite the function to be differentiated:

            tan(4x)=sin(4x)cos(4x)\tan{\left(4 x \right)} = \frac{\sin{\left(4 x \right)}}{\cos{\left(4 x \right)}}

          2. Apply the quotient rule, which is:

            ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

            f(x)=sin(4x)f{\left(x \right)} = \sin{\left(4 x \right)} and g(x)=cos(4x)g{\left(x \right)} = \cos{\left(4 x \right)}.

            To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

            1. Let u=4xu = 4 x.

            2. The derivative of sine is cosine:

              ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 44

              The result of the chain rule is:

              4cos(4x)4 \cos{\left(4 x \right)}

            To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

            1. Let u=4xu = 4 x.

            2. The derivative of cosine is negative sine:

              dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 44

              The result of the chain rule is:

              4sin(4x)- 4 \sin{\left(4 x \right)}

            Now plug in to the quotient rule:

            4sin2(4x)+4cos2(4x)cos2(4x)\frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)}}

          The result of the chain rule is:

          4sin2(4x)+4cos2(4x)cos2(4x)tan2(4x)- \frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)} \tan^{2}{\left(4 x \right)}}

        Method #2

        1. Rewrite the function to be differentiated:

          cot(4x)=cos(4x)sin(4x)\cot{\left(4 x \right)} = \frac{\cos{\left(4 x \right)}}{\sin{\left(4 x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=cos(4x)f{\left(x \right)} = \cos{\left(4 x \right)} and g(x)=sin(4x)g{\left(x \right)} = \sin{\left(4 x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Let u=4xu = 4 x.

          2. The derivative of cosine is negative sine:

            dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 44

            The result of the chain rule is:

            4sin(4x)- 4 \sin{\left(4 x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Let u=4xu = 4 x.

          2. The derivative of sine is cosine:

            ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 44

            The result of the chain rule is:

            4cos(4x)4 \cos{\left(4 x \right)}

          Now plug in to the quotient rule:

          4sin2(4x)4cos2(4x)sin2(4x)\frac{- 4 \sin^{2}{\left(4 x \right)} - 4 \cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}

      So, the result is: 3(4sin2(4x)+4cos2(4x))cos2(4x)tan2(4x)- \frac{3 \left(4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}\right)}{\cos^{2}{\left(4 x \right)} \tan^{2}{\left(4 x \right)}}

    The result is: 3(4sin2(4x)+4cos2(4x))cos2(4x)tan2(4x)16cos(4x)- \frac{3 \left(4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}\right)}{\cos^{2}{\left(4 x \right)} \tan^{2}{\left(4 x \right)}} - 16 \cos{\left(4 x \right)}

  2. Now simplify:

    128sin4(x)+128sin2(x)2812tan2(4x)- 128 \sin^{4}{\left(x \right)} + 128 \sin^{2}{\left(x \right)} - 28 - \frac{12}{\tan^{2}{\left(4 x \right)}}


The answer is:

128sin4(x)+128sin2(x)2812tan2(4x)- 128 \sin^{4}{\left(x \right)} + 128 \sin^{2}{\left(x \right)} - 28 - \frac{12}{\tan^{2}{\left(4 x \right)}}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
                          2     
-12 - 16*cos(4*x) - 12*cot (4*x)
16cos(4x)12cot2(4x)12- 16 \cos{\left(4 x \right)} - 12 \cot^{2}{\left(4 x \right)} - 12
The second derivative [src]
   /               /       2     \         \
32*\2*sin(4*x) + 3*\1 + cot (4*x)/*cot(4*x)/
32(3(cot2(4x)+1)cot(4x)+2sin(4x))32 \left(3 \left(\cot^{2}{\left(4 x \right)} + 1\right) \cot{\left(4 x \right)} + 2 \sin{\left(4 x \right)}\right)
The third derivative [src]
    /                   2                                           \
    |    /       2     \                      2      /       2     \|
128*\- 3*\1 + cot (4*x)/  + 2*cos(4*x) - 6*cot (4*x)*\1 + cot (4*x)//
128(3(cot2(4x)+1)26(cot2(4x)+1)cot2(4x)+2cos(4x))128 \left(- 3 \left(\cot^{2}{\left(4 x \right)} + 1\right)^{2} - 6 \left(\cot^{2}{\left(4 x \right)} + 1\right) \cot^{2}{\left(4 x \right)} + 2 \cos{\left(4 x \right)}\right)
The graph
Derivative of y(x)=-4sin4x+3ctg4x