Mister Exam

Other calculators


(y×sqrt(16-y^2))

Derivative of (y×sqrt(16-y^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     _________
    /       2 
y*\/  16 - y  
$$y \sqrt{16 - y^{2}}$$
y*sqrt(16 - y^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   _________         2     
  /       2         y      
\/  16 - y   - ------------
                  _________
                 /       2 
               \/  16 - y  
$$- \frac{y^{2}}{\sqrt{16 - y^{2}}} + \sqrt{16 - y^{2}}$$
The second derivative [src]
  /         2   \
  |        y    |
y*|-3 + --------|
  |            2|
  \     -16 + y /
-----------------
      _________  
     /       2   
   \/  16 - y    
$$\frac{y \left(\frac{y^{2}}{y^{2} - 16} - 3\right)}{\sqrt{16 - y^{2}}}$$
The third derivative [src]
  /        2  \ /         2   \
  |       y   | |        y    |
3*|1 + -------|*|-1 + --------|
  |          2| |            2|
  \    16 - y / \     -16 + y /
-------------------------------
             _________         
            /       2          
          \/  16 - y           
$$\frac{3 \left(\frac{y^{2}}{16 - y^{2}} + 1\right) \left(\frac{y^{2}}{y^{2} - 16} - 1\right)}{\sqrt{16 - y^{2}}}$$
The graph
Derivative of (y×sqrt(16-y^2))