Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
Apply the power rule: goes to
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
3 2 2
2*y*sin (y) + 3*y *sin (y)*cos(y)
$$3 y^{2} \sin^{2}{\left(y \right)} \cos{\left(y \right)} + 2 y \sin^{3}{\left(y \right)}$$
The second derivative
[src]
/ 2 2 / 2 2 \ \
\2*sin (y) - 3*y *\sin (y) - 2*cos (y)/ + 12*y*cos(y)*sin(y)/*sin(y)
$$\left(- 3 y^{2} \left(\sin^{2}{\left(y \right)} - 2 \cos^{2}{\left(y \right)}\right) + 12 y \sin{\left(y \right)} \cos{\left(y \right)} + 2 \sin^{2}{\left(y \right)}\right) \sin{\left(y \right)}$$
The third derivative
[src]
/ 2 2 / 2 2 \ / 2 2 \ \
3*\6*sin (y)*cos(y) - y *\- 2*cos (y) + 7*sin (y)/*cos(y) - 6*y*\sin (y) - 2*cos (y)/*sin(y)/
$$3 \left(- y^{2} \cdot \left(7 \sin^{2}{\left(y \right)} - 2 \cos^{2}{\left(y \right)}\right) \cos{\left(y \right)} - 6 y \left(\sin^{2}{\left(y \right)} - 2 \cos^{2}{\left(y \right)}\right) \sin{\left(y \right)} + 6 \sin^{2}{\left(y \right)} \cos{\left(y \right)}\right)$$