Mister Exam

Other calculators


y*y*sin(y)^3

Derivative of y*y*sin(y)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       3   
y*y*sin (y)
$$y y \sin^{3}{\left(y \right)}$$
d /       3   \
--\y*y*sin (y)/
dy             
$$\frac{d}{d y} y y \sin^{3}{\left(y \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       3         2    2          
2*y*sin (y) + 3*y *sin (y)*cos(y)
$$3 y^{2} \sin^{2}{\left(y \right)} \cos{\left(y \right)} + 2 y \sin^{3}{\left(y \right)}$$
The second derivative [src]
/     2         2 /   2           2   \                     \       
\2*sin (y) - 3*y *\sin (y) - 2*cos (y)/ + 12*y*cos(y)*sin(y)/*sin(y)
$$\left(- 3 y^{2} \left(\sin^{2}{\left(y \right)} - 2 \cos^{2}{\left(y \right)}\right) + 12 y \sin{\left(y \right)} \cos{\left(y \right)} + 2 \sin^{2}{\left(y \right)}\right) \sin{\left(y \right)}$$
The third derivative [src]
  /     2              2 /       2           2   \              /   2           2   \       \
3*\6*sin (y)*cos(y) - y *\- 2*cos (y) + 7*sin (y)/*cos(y) - 6*y*\sin (y) - 2*cos (y)/*sin(y)/
$$3 \left(- y^{2} \cdot \left(7 \sin^{2}{\left(y \right)} - 2 \cos^{2}{\left(y \right)}\right) \cos{\left(y \right)} - 6 y \left(\sin^{2}{\left(y \right)} - 2 \cos^{2}{\left(y \right)}\right) \sin{\left(y \right)} + 6 \sin^{2}{\left(y \right)} \cos{\left(y \right)}\right)$$
The graph
Derivative of y*y*sin(y)^3