Mister Exam

Other calculators


y=xln(1-x^2)

Derivative of y=xln(1-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     2\
x*log\1 - x /
$$x \log{\left(1 - x^{2} \right)}$$
x*log(1 - x^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      2               
   2*x        /     2\
- ------ + log\1 - x /
       2              
  1 - x               
$$- \frac{2 x^{2}}{1 - x^{2}} + \log{\left(1 - x^{2} \right)}$$
The second derivative [src]
    /         2 \
    |      2*x  |
2*x*|3 - -------|
    |          2|
    \    -1 + x /
-----------------
           2     
     -1 + x      
$$\frac{2 x \left(- \frac{2 x^{2}}{x^{2} - 1} + 3\right)}{x^{2} - 1}$$
The third derivative [src]
  /                   /          2 \\
  |                 2 |       4*x  ||
  |              2*x *|-3 + -------||
  |         2         |           2||
  |      6*x          \     -1 + x /|
2*|3 - ------- + -------------------|
  |          2               2      |
  \    -1 + x          -1 + x       /
-------------------------------------
                     2               
               -1 + x                
$$\frac{2 \left(\frac{2 x^{2} \left(\frac{4 x^{2}}{x^{2} - 1} - 3\right)}{x^{2} - 1} - \frac{6 x^{2}}{x^{2} - 1} + 3\right)}{x^{2} - 1}$$
The graph
Derivative of y=xln(1-x^2)