Mister Exam

Other calculators


y=x^2*ln(sinx)

Derivative of y=x^2*ln(sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2            
x *log(sin(x))
$$x^{2} \log{\left(\sin{\left(x \right)} \right)}$$
x^2*log(sin(x))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                   2       
                  x *cos(x)
2*x*log(sin(x)) + ---------
                    sin(x) 
$$\frac{x^{2} \cos{\left(x \right)}}{\sin{\left(x \right)}} + 2 x \log{\left(\sin{\left(x \right)} \right)}$$
The second derivative [src]
                   /       2   \             
                 2 |    cos (x)|   4*x*cos(x)
2*log(sin(x)) - x *|1 + -------| + ----------
                   |       2   |     sin(x)  
                   \    sin (x)/             
$$- x^{2} \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) + \frac{4 x \cos{\left(x \right)}}{\sin{\left(x \right)}} + 2 \log{\left(\sin{\left(x \right)} \right)}$$
The third derivative [src]
  /                                    /       2   \       \
  |                                  2 |    cos (x)|       |
  |                                 x *|1 + -------|*cos(x)|
  |      /       2   \                 |       2   |       |
  |      |    cos (x)|   3*cos(x)      \    sin (x)/       |
2*|- 3*x*|1 + -------| + -------- + -----------------------|
  |      |       2   |    sin(x)             sin(x)        |
  \      \    sin (x)/                                     /
$$2 \left(\frac{x^{2} \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}} - 3 x \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) + \frac{3 \cos{\left(x \right)}}{\sin{\left(x \right)}}\right)$$
The graph
Derivative of y=x^2*ln(sinx)