2 x *log(sin(x))
x^2*log(sin(x))
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
2
x *cos(x)
2*x*log(sin(x)) + ---------
sin(x)
/ 2 \
2 | cos (x)| 4*x*cos(x)
2*log(sin(x)) - x *|1 + -------| + ----------
| 2 | sin(x)
\ sin (x)/
/ / 2 \ \ | 2 | cos (x)| | | x *|1 + -------|*cos(x)| | / 2 \ | 2 | | | | cos (x)| 3*cos(x) \ sin (x)/ | 2*|- 3*x*|1 + -------| + -------- + -----------------------| | | 2 | sin(x) sin(x) | \ \ sin (x)/ /