Mister Exam

Other calculators


e^(2x^2)*ln(sin(x))
  • How to use it?

  • Derivative of:
  • Derivative of e^(-x^2) Derivative of e^(-x^2)
  • Derivative of x^2/4 Derivative of x^2/4
  • Derivative of -e^-x Derivative of -e^-x
  • Derivative of (x)^(1/2) Derivative of (x)^(1/2)
  • Identical expressions

  • e^(two x^2)*ln(sin(x))
  • e to the power of (2x squared ) multiply by ln( sinus of (x))
  • e to the power of (two x squared ) multiply by ln( sinus of (x))
  • e(2x2)*ln(sin(x))
  • e2x2*lnsinx
  • e^(2x²)*ln(sin(x))
  • e to the power of (2x to the power of 2)*ln(sin(x))
  • e^(2x^2)ln(sin(x))
  • e(2x2)ln(sin(x))
  • e2x2lnsinx
  • e^2x^2lnsinx
  • Similar expressions

  • e^(2x^2)*ln(sinx)

Derivative of e^(2x^2)*ln(sin(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2            
 2*x             
e    *log(sin(x))
$$e^{2 x^{2}} \log{\left(\sin{\left(x \right)} \right)}$$
  /    2            \
d | 2*x             |
--\e    *log(sin(x))/
dx                   
$$\frac{d}{d x} e^{2 x^{2}} \log{\left(\sin{\left(x \right)} \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
           2                        
        2*x            2            
cos(x)*e            2*x             
------------ + 4*x*e    *log(sin(x))
   sin(x)                           
$$4 x e^{2 x^{2}} \log{\left(\sin{\left(x \right)} \right)} + \frac{e^{2 x^{2}} \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The second derivative [src]
/        2                                           \     2
|     cos (x)     /       2\               8*x*cos(x)|  2*x 
|-1 - ------- + 4*\1 + 4*x /*log(sin(x)) + ----------|*e    
|        2                                   sin(x)  |      
\     sin (x)                                        /      
$$\left(4 \cdot \left(4 x^{2} + 1\right) \log{\left(\sin{\left(x \right)} \right)} + \frac{8 x \cos{\left(x \right)}}{\sin{\left(x \right)}} - 1 - \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) e^{2 x^{2}}$$
The third derivative [src]
  /                      /       2   \                                                          \      
  |                      |    cos (x)|                                                          |      
  |                      |1 + -------|*cos(x)                                                   |      
  |      /       2   \   |       2   |            /       2\                                    |     2
  |      |    cos (x)|   \    sin (x)/          6*\1 + 4*x /*cos(x)       /       2\            |  2*x 
2*|- 6*x*|1 + -------| + -------------------- + ------------------- + 8*x*\3 + 4*x /*log(sin(x))|*e    
  |      |       2   |          sin(x)                 sin(x)                                   |      
  \      \    sin (x)/                                                                          /      
$$2 \left(8 x \left(4 x^{2} + 3\right) \log{\left(\sin{\left(x \right)} \right)} - 6 x \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) + \frac{\left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{6 \cdot \left(4 x^{2} + 1\right) \cos{\left(x \right)}}{\sin{\left(x \right)}}\right) e^{2 x^{2}}$$
The graph
Derivative of e^(2x^2)*ln(sin(x))