2 2*x e *log(sin(x))
/ 2 \ d | 2*x | --\e *log(sin(x))/ dx
Apply the product rule:
; to find :
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
2
2*x 2
cos(x)*e 2*x
------------ + 4*x*e *log(sin(x))
sin(x)
/ 2 \ 2 | cos (x) / 2\ 8*x*cos(x)| 2*x |-1 - ------- + 4*\1 + 4*x /*log(sin(x)) + ----------|*e | 2 sin(x) | \ sin (x) /
/ / 2 \ \ | | cos (x)| | | |1 + -------|*cos(x) | | / 2 \ | 2 | / 2\ | 2 | | cos (x)| \ sin (x)/ 6*\1 + 4*x /*cos(x) / 2\ | 2*x 2*|- 6*x*|1 + -------| + -------------------- + ------------------- + 8*x*\3 + 4*x /*log(sin(x))|*e | | 2 | sin(x) sin(x) | \ \ sin (x)/ /