Mister Exam

Other calculators


y=x^3(x-3)^2

Derivative of y=x^3(x-3)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3        2
x *(x - 3) 
x3(x3)2x^{3} \left(x - 3\right)^{2}
x^3*(x - 3)^2
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x3f{\left(x \right)} = x^{3}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    g(x)=(x3)2g{\left(x \right)} = \left(x - 3\right)^{2}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x3u = x - 3.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(x3)\frac{d}{d x} \left(x - 3\right):

      1. Differentiate x3x - 3 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 3-3 is zero.

        The result is: 11

      The result of the chain rule is:

      2x62 x - 6

    The result is: x3(2x6)+3x2(x3)2x^{3} \left(2 x - 6\right) + 3 x^{2} \left(x - 3\right)^{2}

  2. Now simplify:

    x2(x3)(5x9)x^{2} \left(x - 3\right) \left(5 x - 9\right)


The answer is:

x2(x3)(5x9)x^{2} \left(x - 3\right) \left(5 x - 9\right)

The graph
02468-8-6-4-2-1010-250000250000
The first derivative [src]
 3                 2        2
x *(-6 + 2*x) + 3*x *(x - 3) 
x3(2x6)+3x2(x3)2x^{3} \left(2 x - 6\right) + 3 x^{2} \left(x - 3\right)^{2}
The second derivative [src]
    / 2             2               \
2*x*\x  + 3*(-3 + x)  + 6*x*(-3 + x)/
2x(x2+6x(x3)+3(x3)2)2 x \left(x^{2} + 6 x \left(x - 3\right) + 3 \left(x - 3\right)^{2}\right)
The third derivative [src]
  /        2      2               \
6*\(-3 + x)  + 3*x  + 6*x*(-3 + x)/
6(3x2+6x(x3)+(x3)2)6 \left(3 x^{2} + 6 x \left(x - 3\right) + \left(x - 3\right)^{2}\right)
The graph
Derivative of y=x^3(x-3)^2