Mister Exam

Other calculators


y=x^3(2x^2-1)

Derivative of y=x^3(2x^2-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3 /   2    \
x *\2*x  - 1/
x3(2x21)x^{3} \cdot \left(2 x^{2} - 1\right)
d / 3 /   2    \\
--\x *\2*x  - 1//
dx               
ddxx3(2x21)\frac{d}{d x} x^{3} \cdot \left(2 x^{2} - 1\right)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x3f{\left(x \right)} = x^{3}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    g(x)=2x21g{\left(x \right)} = 2 x^{2} - 1; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate 2x212 x^{2} - 1 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 4x4 x

      2. The derivative of the constant (1)1\left(-1\right) 1 is zero.

      The result is: 4x4 x

    The result is: 4x4+3x2(2x21)4 x^{4} + 3 x^{2} \cdot \left(2 x^{2} - 1\right)

  2. Now simplify:

    x2(10x23)x^{2} \cdot \left(10 x^{2} - 3\right)


The answer is:

x2(10x23)x^{2} \cdot \left(10 x^{2} - 3\right)

The graph
02468-8-6-4-2-1010-500000500000
The first derivative [src]
   4      2 /   2    \
4*x  + 3*x *\2*x  - 1/
4x4+3x2(2x21)4 x^{4} + 3 x^{2} \cdot \left(2 x^{2} - 1\right)
The second derivative [src]
    /         2\
2*x*\-3 + 20*x /
2x(20x23)2 x \left(20 x^{2} - 3\right)
The third derivative [src]
  /         2\
6*\-1 + 20*x /
6(20x21)6 \cdot \left(20 x^{2} - 1\right)
The graph
Derivative of y=x^3(2x^2-1)