Mister Exam

Other calculators


sqrt(100-x^2)

Derivative of sqrt(100-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   __________
  /        2 
\/  100 - x  
$$\sqrt{- x^{2} + 100}$$
  /   __________\
d |  /        2 |
--\\/  100 - x  /
dx               
$$\frac{d}{d x} \sqrt{- x^{2} + 100}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
     -x      
-------------
   __________
  /        2 
\/  100 - x  
$$- \frac{x}{\sqrt{- x^{2} + 100}}$$
The second derivative [src]
 /        2   \ 
 |       x    | 
-|1 + --------| 
 |           2| 
 \    100 - x / 
----------------
    __________  
   /        2   
 \/  100 - x    
$$- \frac{\frac{x^{2}}{- x^{2} + 100} + 1}{\sqrt{- x^{2} + 100}}$$
The third derivative [src]
     /        2   \
     |       x    |
-3*x*|1 + --------|
     |           2|
     \    100 - x /
-------------------
             3/2   
   /       2\      
   \100 - x /      
$$- \frac{3 x \left(\frac{x^{2}}{- x^{2} + 100} + 1\right)}{\left(- x^{2} + 100\right)^{\frac{3}{2}}}$$
The graph
Derivative of sqrt(100-x^2)