Mister Exam

Other calculators


y=x^5(x-3)^3

Derivative of y=x^5(x-3)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 5        3
x *(x - 3) 
$$x^{5} \left(x - 3\right)^{3}$$
d / 5        3\
--\x *(x - 3) /
dx             
$$\frac{d}{d x} x^{5} \left(x - 3\right)^{3}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   5        2      4        3
3*x *(x - 3)  + 5*x *(x - 3) 
$$3 x^{5} \left(x - 3\right)^{2} + 5 x^{4} \left(x - 3\right)^{3}$$
The second derivative [src]
   3          /   2              2                \
2*x *(-3 + x)*\3*x  + 10*(-3 + x)  + 15*x*(-3 + x)/
$$2 x^{3} \left(x - 3\right) \left(3 x^{2} + 15 x \left(x - 3\right) + 10 \left(x - 3\right)^{2}\right)$$
The third derivative [src]
   2 / 3              3       2                         2\
6*x *\x  + 10*(-3 + x)  + 15*x *(-3 + x) + 30*x*(-3 + x) /
$$6 x^{2} \left(x^{3} + 15 x^{2} \left(x - 3\right) + 30 x \left(x - 3\right)^{2} + 10 \left(x - 3\right)^{3}\right)$$
The graph
Derivative of y=x^5(x-3)^3