Mister Exam

Other calculators


y=x^5(x-3)^3

Derivative of y=x^5(x-3)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 5        3
x *(x - 3) 
x5(x3)3x^{5} \left(x - 3\right)^{3}
d / 5        3\
--\x *(x - 3) /
dx             
ddxx5(x3)3\frac{d}{d x} x^{5} \left(x - 3\right)^{3}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x5f{\left(x \right)} = x^{5}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x5x^{5} goes to 5x45 x^{4}

    g(x)=(x3)3g{\left(x \right)} = \left(x - 3\right)^{3}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x3u = x - 3.

    2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    3. Then, apply the chain rule. Multiply by ddx(x3)\frac{d}{d x} \left(x - 3\right):

      1. Differentiate x3x - 3 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant (1)3\left(-1\right) 3 is zero.

        The result is: 11

      The result of the chain rule is:

      3(x3)23 \left(x - 3\right)^{2}

    The result is: 3x5(x3)2+5x4(x3)33 x^{5} \left(x - 3\right)^{2} + 5 x^{4} \left(x - 3\right)^{3}

  2. Now simplify:

    x4(x3)2(8x15)x^{4} \left(x - 3\right)^{2} \cdot \left(8 x - 15\right)


The answer is:

x4(x3)2(8x15)x^{4} \left(x - 3\right)^{2} \cdot \left(8 x - 15\right)

The graph
02468-8-6-4-2-1010-500000000500000000
The first derivative [src]
   5        2      4        3
3*x *(x - 3)  + 5*x *(x - 3) 
3x5(x3)2+5x4(x3)33 x^{5} \left(x - 3\right)^{2} + 5 x^{4} \left(x - 3\right)^{3}
The second derivative [src]
   3          /   2              2                \
2*x *(-3 + x)*\3*x  + 10*(-3 + x)  + 15*x*(-3 + x)/
2x3(x3)(3x2+15x(x3)+10(x3)2)2 x^{3} \left(x - 3\right) \left(3 x^{2} + 15 x \left(x - 3\right) + 10 \left(x - 3\right)^{2}\right)
The third derivative [src]
   2 / 3              3       2                         2\
6*x *\x  + 10*(-3 + x)  + 15*x *(-3 + x) + 30*x*(-3 + x) /
6x2(x3+15x2(x3)+30x(x3)2+10(x3)3)6 x^{2} \left(x^{3} + 15 x^{2} \left(x - 3\right) + 30 x \left(x - 3\right)^{2} + 10 \left(x - 3\right)^{3}\right)
The graph
Derivative of y=x^5(x-3)^3