Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of sine is cosine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
5 4
x *cos(x) + 5*x *sin(x)
$$x^{5} \cos{\left(x \right)} + 5 x^{4} \sin{\left(x \right)}$$
The second derivative
[src]
3 / 2 \
x *\20*sin(x) - x *sin(x) + 10*x*cos(x)/
$$x^{3} \left(- x^{2} \sin{\left(x \right)} + 10 x \cos{\left(x \right)} + 20 \sin{\left(x \right)}\right)$$
The third derivative
[src]
2 / 3 2 \
x *\60*sin(x) - x *cos(x) - 15*x *sin(x) + 60*x*cos(x)/
$$x^{2} \left(- x^{3} \cos{\left(x \right)} - 15 x^{2} \sin{\left(x \right)} + 60 x \cos{\left(x \right)} + 60 \sin{\left(x \right)}\right)$$