Mister Exam

Other calculators


y=5x^5*sinx

Derivative of y=5x^5*sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   5       
5*x *sin(x)
$$5 x^{5} \sin{\left(x \right)}$$
d /   5       \
--\5*x *sin(x)/
dx             
$$\frac{d}{d x} 5 x^{5} \sin{\left(x \right)}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. The derivative of sine is cosine:

      The result is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   5              4       
5*x *cos(x) + 25*x *sin(x)
$$5 x^{5} \cos{\left(x \right)} + 25 x^{4} \sin{\left(x \right)}$$
The second derivative [src]
   3 /             2                     \
5*x *\20*sin(x) - x *sin(x) + 10*x*cos(x)/
$$5 x^{3} \left(- x^{2} \sin{\left(x \right)} + 10 x \cos{\left(x \right)} + 20 \sin{\left(x \right)}\right)$$
The third derivative [src]
   2 /             3              2                     \
5*x *\60*sin(x) - x *cos(x) - 15*x *sin(x) + 60*x*cos(x)/
$$5 x^{2} \left(- x^{3} \cos{\left(x \right)} - 15 x^{2} \sin{\left(x \right)} + 60 x \cos{\left(x \right)} + 60 \sin{\left(x \right)}\right)$$
The graph
Derivative of y=5x^5*sinx