Mister Exam

Other calculators


y=x^2ln(e^sin(3x))

Derivative of y=x^2ln(e^sin(3x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2    / sin(3*x)\
x *log\e        /
x2log(esin(3x))x^{2} \log{\left(e^{\sin{\left(3 x \right)}} \right)}
d / 2    / sin(3*x)\\
--\x *log\e        //
dx                   
ddxx2log(esin(3x))\frac{d}{d x} x^{2} \log{\left(e^{\sin{\left(3 x \right)}} \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x2f{\left(x \right)} = x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    g(x)=log(esin(3x))g{\left(x \right)} = \log{\left(e^{\sin{\left(3 x \right)}} \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=esin(3x)u = e^{\sin{\left(3 x \right)}}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddxesin(3x)\frac{d}{d x} e^{\sin{\left(3 x \right)}}:

      1. Let u=sin(3x)u = \sin{\left(3 x \right)}.

      2. The derivative of eue^{u} is itself.

      3. Then, apply the chain rule. Multiply by ddxsin(3x)\frac{d}{d x} \sin{\left(3 x \right)}:

        1. Let u=3xu = 3 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 33

          The result of the chain rule is:

          3cos(3x)3 \cos{\left(3 x \right)}

        The result of the chain rule is:

        3esin(3x)cos(3x)3 e^{\sin{\left(3 x \right)}} \cos{\left(3 x \right)}

      The result of the chain rule is:

      3cos(3x)3 \cos{\left(3 x \right)}

    The result is: 3x2cos(3x)+2xlog(esin(3x))3 x^{2} \cos{\left(3 x \right)} + 2 x \log{\left(e^{\sin{\left(3 x \right)}} \right)}

  2. Now simplify:

    x(3xcos(3x)+2sin(3x))x \left(3 x \cos{\left(3 x \right)} + 2 \sin{\left(3 x \right)}\right)


The answer is:

x(3xcos(3x)+2sin(3x))x \left(3 x \cos{\left(3 x \right)} + 2 \sin{\left(3 x \right)}\right)

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
       / sin(3*x)\      2         
2*x*log\e        / + 3*x *cos(3*x)
3x2cos(3x)+2xlog(esin(3x))3 x^{2} \cos{\left(3 x \right)} + 2 x \log{\left(e^{\sin{\left(3 x \right)}} \right)}
The second derivative [src]
                2                         
2*sin(3*x) - 9*x *sin(3*x) + 12*x*cos(3*x)
9x2sin(3x)+12xcos(3x)+2sin(3x)- 9 x^{2} \sin{\left(3 x \right)} + 12 x \cos{\left(3 x \right)} + 2 \sin{\left(3 x \right)}
The third derivative [src]
  /                               2         \
9*\2*cos(3*x) - 6*x*sin(3*x) - 3*x *cos(3*x)/
9(3x2cos(3x)6xsin(3x)+2cos(3x))9 \left(- 3 x^{2} \cos{\left(3 x \right)} - 6 x \sin{\left(3 x \right)} + 2 \cos{\left(3 x \right)}\right)
The graph
Derivative of y=x^2ln(e^sin(3x))