Mister Exam

Other calculators


y=x(sqrt(3-2x²))

Derivative of y=x(sqrt(3-2x²))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     __________
    /        2 
x*\/  3 - 2*x  
$$x \sqrt{3 - 2 x^{2}}$$
x*sqrt(3 - 2*x^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   __________           2    
  /        2         2*x     
\/  3 - 2*x   - -------------
                   __________
                  /        2 
                \/  3 - 2*x  
$$- \frac{2 x^{2}}{\sqrt{3 - 2 x^{2}}} + \sqrt{3 - 2 x^{2}}$$
The second derivative [src]
    /           2  \
    |        2*x   |
2*x*|-3 + ---------|
    |             2|
    \     -3 + 2*x /
--------------------
      __________    
     /        2     
   \/  3 - 2*x      
$$\frac{2 x \left(\frac{2 x^{2}}{2 x^{2} - 3} - 3\right)}{\sqrt{3 - 2 x^{2}}}$$
The third derivative [src]
  /         2  \ /           2  \
  |      2*x   | |        2*x   |
6*|1 + --------|*|-1 + ---------|
  |           2| |             2|
  \    3 - 2*x / \     -3 + 2*x /
---------------------------------
             __________          
            /        2           
          \/  3 - 2*x            
$$\frac{6 \left(\frac{2 x^{2}}{3 - 2 x^{2}} + 1\right) \left(\frac{2 x^{2}}{2 x^{2} - 3} - 1\right)}{\sqrt{3 - 2 x^{2}}}$$
The graph
Derivative of y=x(sqrt(3-2x²))