Mister Exam

Derivative of y=x*ln(x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*log(x - 1)
xlog(x1)x \log{\left(x - 1 \right)}
x*log(x - 1)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=log(x1)g{\left(x \right)} = \log{\left(x - 1 \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x1u = x - 1.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx(x1)\frac{d}{d x} \left(x - 1\right):

      1. Differentiate x1x - 1 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 1-1 is zero.

        The result is: 11

      The result of the chain rule is:

      1x1\frac{1}{x - 1}

    The result is: xx1+log(x1)\frac{x}{x - 1} + \log{\left(x - 1 \right)}

  2. Now simplify:

    x+(x1)log(x1)x1\frac{x + \left(x - 1\right) \log{\left(x - 1 \right)}}{x - 1}


The answer is:

x+(x1)log(x1)x1\frac{x + \left(x - 1\right) \log{\left(x - 1 \right)}}{x - 1}

The graph
02468-8-6-4-2-1010-2525
The first derivative [src]
  x               
----- + log(x - 1)
x - 1             
xx1+log(x1)\frac{x}{x - 1} + \log{\left(x - 1 \right)}
The second derivative [src]
      x   
2 - ------
    -1 + x
----------
  -1 + x  
xx1+2x1\frac{- \frac{x}{x - 1} + 2}{x - 1}
The third derivative [src]
      2*x  
-3 + ------
     -1 + x
-----------
         2 
 (-1 + x)  
2xx13(x1)2\frac{\frac{2 x}{x - 1} - 3}{\left(x - 1\right)^{2}}
The graph
Derivative of y=x*ln(x-1)