Mister Exam

Other calculators


y=x(lnx-1):x*2

Derivative of y=x(lnx-1):x*2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*(log(x) - 1)  
--------------*2
      x         
2x(log(x)1)x2 \frac{x \left(\log{\left(x \right)} - 1\right)}{x}
((x*(log(x) - 1))/x)*2
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=x(log(x)1)f{\left(x \right)} = x \left(\log{\left(x \right)} - 1\right) and g(x)=xg{\left(x \right)} = x.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the product rule:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

        f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Apply the power rule: xx goes to 11

        g(x)=log(x)1g{\left(x \right)} = \log{\left(x \right)} - 1; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Differentiate log(x)1\log{\left(x \right)} - 1 term by term:

          1. The derivative of the constant 1-1 is zero.

          2. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

          The result is: 1x\frac{1}{x}

        The result is: log(x)\log{\left(x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      Now plug in to the quotient rule:

      x(log(x)1)+xlog(x)x2\frac{- x \left(\log{\left(x \right)} - 1\right) + x \log{\left(x \right)}}{x^{2}}

    So, the result is: 2(x(log(x)1)+xlog(x))x2\frac{2 \left(- x \left(\log{\left(x \right)} - 1\right) + x \log{\left(x \right)}\right)}{x^{2}}

  2. Now simplify:

    2x\frac{2}{x}


The answer is:

2x\frac{2}{x}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
  2*(log(x) - 1)   2*log(x)
- -------------- + --------
        x             x    
2(log(x)1)x+2log(x)x- \frac{2 \left(\log{\left(x \right)} - 1\right)}{x} + \frac{2 \log{\left(x \right)}}{x}
The second derivative [src]
-2 
---
  2
 x 
2x2- \frac{2}{x^{2}}
The third derivative [src]
4 
--
 3
x 
4x3\frac{4}{x^{3}}
The graph
Derivative of y=x(lnx-1):x*2