Mister Exam

Derivative of y=xlog2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*log(2*x)
xlog(2x)x \log{\left(2 x \right)}
d             
--(x*log(2*x))
dx            
ddxxlog(2x)\frac{d}{d x} x \log{\left(2 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=log(2x)g{\left(x \right)} = \log{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      1x\frac{1}{x}

    The result is: log(2x)+1\log{\left(2 x \right)} + 1


The answer is:

log(2x)+1\log{\left(2 x \right)} + 1

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
1 + log(2*x)
log(2x)+1\log{\left(2 x \right)} + 1
The second derivative [src]
1
-
x
1x\frac{1}{x}
The third derivative [src]
-1 
---
  2
 x 
1x2- \frac{1}{x^{2}}
The graph
Derivative of y=xlog2x