Apply the product rule:
dxdf(x)g(x)=f(x)dxdg(x)+g(x)dxdf(x)
f(x)=x; to find dxdf(x):
-
Apply the power rule: x goes to 1
g(x)=log(2x); to find dxdg(x):
-
Let u=2x.
-
The derivative of log(u) is u1.
-
Then, apply the chain rule. Multiply by dxd2x:
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Apply the power rule: x goes to 1
So, the result is: 2
The result of the chain rule is:
The result is: log(2x)+1