Mister Exam

Other calculators


y=x/(x-1)/(x-4)

Derivative of y=x/(x-1)/(x-4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/  x  \
|-----|
\x - 1/
-------
 x - 4 
$$\frac{x \frac{1}{x - 1}}{x - 4}$$
(x/(x - 1))/(x - 4)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Apply the product rule:

      ; to find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      ; to find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
  1        x                       
----- - --------                   
x - 1          2                   
        (x - 1)           x        
---------------- - ----------------
     x - 4                        2
                   (x - 1)*(x - 4) 
$$- \frac{x}{\left(x - 4\right)^{2} \left(x - 1\right)} + \frac{- \frac{x}{\left(x - 1\right)^{2}} + \frac{1}{x - 1}}{x - 4}$$
The second derivative [src]
  /                   x             x   \
  |            -1 + ------   -1 + ------|
  |    x            -1 + x        -1 + x|
2*|--------- + ----------- + -----------|
  |        2      -1 + x        -4 + x  |
  \(-4 + x)                             /
-----------------------------------------
            (-1 + x)*(-4 + x)            
$$\frac{2 \left(\frac{x}{\left(x - 4\right)^{2}} + \frac{\frac{x}{x - 1} - 1}{x - 1} + \frac{\frac{x}{x - 1} - 1}{x - 4}\right)}{\left(x - 4\right) \left(x - 1\right)}$$
The third derivative [src]
   /                   x             x                x      \
   |            -1 + ------   -1 + ------      -1 + ------   |
   |    x            -1 + x        -1 + x           -1 + x   |
-6*|--------- + ----------- + ----------- + -----------------|
   |        3            2             2    (-1 + x)*(-4 + x)|
   \(-4 + x)     (-1 + x)      (-4 + x)                      /
--------------------------------------------------------------
                      (-1 + x)*(-4 + x)                       
$$- \frac{6 \left(\frac{x}{\left(x - 4\right)^{3}} + \frac{\frac{x}{x - 1} - 1}{\left(x - 1\right)^{2}} + \frac{\frac{x}{x - 1} - 1}{\left(x - 4\right) \left(x - 1\right)} + \frac{\frac{x}{x - 1} - 1}{\left(x - 4\right)^{2}}\right)}{\left(x - 4\right) \left(x - 1\right)}$$
The graph
Derivative of y=x/(x-1)/(x-4)