/ x \ |-----| \x - 1/ ------- x - 4
(x/(x - 1))/(x - 4)
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Apply the product rule:
; to find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
; to find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result is:
Now plug in to the quotient rule:
The answer is:
1 x
----- - --------
x - 1 2
(x - 1) x
---------------- - ----------------
x - 4 2
(x - 1)*(x - 4)
/ x x \
| -1 + ------ -1 + ------|
| x -1 + x -1 + x|
2*|--------- + ----------- + -----------|
| 2 -1 + x -4 + x |
\(-4 + x) /
-----------------------------------------
(-1 + x)*(-4 + x)
/ x x x \
| -1 + ------ -1 + ------ -1 + ------ |
| x -1 + x -1 + x -1 + x |
-6*|--------- + ----------- + ----------- + -----------------|
| 3 2 2 (-1 + x)*(-4 + x)|
\(-4 + x) (-1 + x) (-4 + x) /
--------------------------------------------------------------
(-1 + x)*(-4 + x)