Mister Exam

Other calculators


x^2/cosx

Derivative of x^2/cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2  
  x   
------
cos(x)
$$\frac{x^{2}}{\cos{\left(x \right)}}$$
x^2/cos(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. The derivative of cosine is negative sine:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
          2       
 2*x     x *sin(x)
------ + ---------
cos(x)       2    
          cos (x) 
$$\frac{x^{2} \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{2 x}{\cos{\left(x \right)}}$$
The second derivative [src]
       /         2   \             
     2 |    2*sin (x)|   4*x*sin(x)
2 + x *|1 + ---------| + ----------
       |        2    |     cos(x)  
       \     cos (x) /             
-----------------------------------
               cos(x)              
$$\frac{x^{2} \left(\frac{2 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) + \frac{4 x \sin{\left(x \right)}}{\cos{\left(x \right)}} + 2}{\cos{\left(x \right)}}$$
The third derivative [src]
                                    /         2   \       
                                  2 |    6*sin (x)|       
                                 x *|5 + ---------|*sin(x)
    /         2   \                 |        2    |       
    |    2*sin (x)|   6*sin(x)      \     cos (x) /       
6*x*|1 + ---------| + -------- + -------------------------
    |        2    |    cos(x)              cos(x)         
    \     cos (x) /                                       
----------------------------------------------------------
                          cos(x)                          
$$\frac{\frac{x^{2} \left(\frac{6 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 5\right) \sin{\left(x \right)}}{\cos{\left(x \right)}} + 6 x \left(\frac{2 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) + \frac{6 \sin{\left(x \right)}}{\cos{\left(x \right)}}}{\cos{\left(x \right)}}$$
The graph
Derivative of x^2/cosx