Mister Exam

Other calculators


(3x+4)^2(x-5)^3

Derivative of (3x+4)^2(x-5)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         2        3
(3*x + 4) *(x - 5) 
(x5)3(3x+4)2\left(x - 5\right)^{3} \left(3 x + 4\right)^{2}
d /         2        3\
--\(3*x + 4) *(x - 5) /
dx                     
ddx(x5)3(3x+4)2\frac{d}{d x} \left(x - 5\right)^{3} \left(3 x + 4\right)^{2}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=(3x+4)2f{\left(x \right)} = \left(3 x + 4\right)^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=3x+4u = 3 x + 4.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(3x+4)\frac{d}{d x} \left(3 x + 4\right):

      1. Differentiate 3x+43 x + 4 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 33

        2. The derivative of the constant 44 is zero.

        The result is: 33

      The result of the chain rule is:

      18x+2418 x + 24

    g(x)=(x5)3g{\left(x \right)} = \left(x - 5\right)^{3}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x5u = x - 5.

    2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    3. Then, apply the chain rule. Multiply by ddx(x5)\frac{d}{d x} \left(x - 5\right):

      1. Differentiate x5x - 5 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant (1)5\left(-1\right) 5 is zero.

        The result is: 11

      The result of the chain rule is:

      3(x5)23 \left(x - 5\right)^{2}

    The result is: (x5)3(18x+24)+3(x5)2(3x+4)2\left(x - 5\right)^{3} \cdot \left(18 x + 24\right) + 3 \left(x - 5\right)^{2} \left(3 x + 4\right)^{2}

  2. Now simplify:

    3(x5)2(3x+4)(5x6)3 \left(x - 5\right)^{2} \cdot \left(3 x + 4\right) \left(5 x - 6\right)


The answer is:

3(x5)2(3x+4)(5x6)3 \left(x - 5\right)^{2} \cdot \left(3 x + 4\right) \left(5 x - 6\right)

The graph
02468-8-6-4-2-1010-50000005000000
The first derivative [src]
       3                        2          2
(x - 5) *(24 + 18*x) + 3*(x - 5) *(3*x + 4) 
(x5)3(18x+24)+3(x5)2(3x+4)2\left(x - 5\right)^{3} \cdot \left(18 x + 24\right) + 3 \left(x - 5\right)^{2} \left(3 x + 4\right)^{2}
The second derivative [src]
           /         2             2                       \
6*(-5 + x)*\(4 + 3*x)  + 3*(-5 + x)  + 6*(-5 + x)*(4 + 3*x)/
6(x5)(3(x5)2+6(x5)(3x+4)+(3x+4)2)6 \left(x - 5\right) \left(3 \left(x - 5\right)^{2} + 6 \left(x - 5\right) \left(3 x + 4\right) + \left(3 x + 4\right)^{2}\right)
The third derivative [src]
  /         2              2                        \
6*\(4 + 3*x)  + 27*(-5 + x)  + 18*(-5 + x)*(4 + 3*x)/
6(27(x5)2+18(x5)(3x+4)+(3x+4)2)6 \cdot \left(27 \left(x - 5\right)^{2} + 18 \left(x - 5\right) \left(3 x + 4\right) + \left(3 x + 4\right)^{2}\right)
The graph
Derivative of (3x+4)^2(x-5)^3