Mister Exam

Other calculators


y=(x²-4)²/(2x²+1)³

Derivative of y=(x²-4)²/(2x²+1)³

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         2 
 / 2    \  
 \x  - 4/  
-----------
          3
/   2    \ 
\2*x  + 1/ 
(x24)2(2x2+1)3\frac{\left(x^{2} - 4\right)^{2}}{\left(2 x^{2} + 1\right)^{3}}
  /         2 \
  | / 2    \  |
d | \x  - 4/  |
--|-----------|
dx|          3|
  |/   2    \ |
  \\2*x  + 1/ /
ddx(x24)2(2x2+1)3\frac{d}{d x} \frac{\left(x^{2} - 4\right)^{2}}{\left(2 x^{2} + 1\right)^{3}}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=(x24)2f{\left(x \right)} = \left(x^{2} - 4\right)^{2} and g(x)=(2x2+1)3g{\left(x \right)} = \left(2 x^{2} + 1\right)^{3}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=x24u = x^{2} - 4.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(x24)\frac{d}{d x} \left(x^{2} - 4\right):

      1. Differentiate x24x^{2} - 4 term by term:

        1. The derivative of the constant 4-4 is zero.

        2. Apply the power rule: x2x^{2} goes to 2x2 x

        The result is: 2x2 x

      The result of the chain rule is:

      2x(2x28)2 x \left(2 x^{2} - 8\right)

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2x2+1u = 2 x^{2} + 1.

    2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    3. Then, apply the chain rule. Multiply by ddx(2x2+1)\frac{d}{d x} \left(2 x^{2} + 1\right):

      1. Differentiate 2x2+12 x^{2} + 1 term by term:

        1. The derivative of the constant 11 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          So, the result is: 4x4 x

        The result is: 4x4 x

      The result of the chain rule is:

      12x(2x2+1)212 x \left(2 x^{2} + 1\right)^{2}

    Now plug in to the quotient rule:

    12x(x24)2(2x2+1)2+2x(2x28)(2x2+1)3(2x2+1)6\frac{- 12 x \left(x^{2} - 4\right)^{2} \left(2 x^{2} + 1\right)^{2} + 2 x \left(2 x^{2} - 8\right) \left(2 x^{2} + 1\right)^{3}}{\left(2 x^{2} + 1\right)^{6}}

  2. Now simplify:

    4x(13x2)(x24)(2x2+1)4\frac{4 x \left(13 - x^{2}\right) \left(x^{2} - 4\right)}{\left(2 x^{2} + 1\right)^{4}}


The answer is:

4x(13x2)(x24)(2x2+1)4\frac{4 x \left(13 - x^{2}\right) \left(x^{2} - 4\right)}{\left(2 x^{2} + 1\right)^{4}}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
               2               
       / 2    \        / 2    \
  12*x*\x  - 4/    4*x*\x  - 4/
- -------------- + ------------
             4               3 
   /   2    \      /   2    \  
   \2*x  + 1/      \2*x  + 1/  
12x(x24)2(2x2+1)4+4x(x24)(2x2+1)3- \frac{12 x \left(x^{2} - 4\right)^{2}}{\left(2 x^{2} + 1\right)^{4}} + \frac{4 x \left(x^{2} - 4\right)}{\left(2 x^{2} + 1\right)^{3}}
The second derivative [src]
  /                                         2 /          2  \\
  |                                /      2\  |      16*x   ||
  |                              3*\-4 + x / *|-1 + --------||
  |                2 /      2\                |            2||
  |        2   24*x *\-4 + x /                \     1 + 2*x /|
4*|-4 + 3*x  - --------------- + ----------------------------|
  |                       2                       2          |
  \                1 + 2*x                 1 + 2*x           /
--------------------------------------------------------------
                                   3                          
                         /       2\                           
                         \1 + 2*x /                           
4(24x2(x24)2x2+1+3x2+3(x24)2(16x22x2+11)2x2+14)(2x2+1)3\frac{4 \left(- \frac{24 x^{2} \left(x^{2} - 4\right)}{2 x^{2} + 1} + 3 x^{2} + \frac{3 \left(x^{2} - 4\right)^{2} \cdot \left(\frac{16 x^{2}}{2 x^{2} + 1} - 1\right)}{2 x^{2} + 1} - 4\right)}{\left(2 x^{2} + 1\right)^{3}}
The third derivative [src]
     /                               2 /          2  \     /          2  \          \
     |                      /      2\  |      20*x   |     |      16*x   | /      2\|
     |                    8*\-4 + x / *|-3 + --------|   6*|-1 + --------|*\-4 + x /|
     |      /        2\                |            2|     |            2|          |
     |    6*\-4 + 3*x /                \     1 + 2*x /     \     1 + 2*x /          |
24*x*|1 - ------------- - ---------------------------- + ---------------------------|
     |              2                       2                             2         |
     |       1 + 2*x              /       2\                       1 + 2*x          |
     \                            \1 + 2*x /                                        /
-------------------------------------------------------------------------------------
                                               3                                     
                                     /       2\                                      
                                     \1 + 2*x /                                      
24x(8(x24)2(20x22x2+13)(2x2+1)2+6(x24)(16x22x2+11)2x2+1+16(3x24)2x2+1)(2x2+1)3\frac{24 x \left(- \frac{8 \left(x^{2} - 4\right)^{2} \cdot \left(\frac{20 x^{2}}{2 x^{2} + 1} - 3\right)}{\left(2 x^{2} + 1\right)^{2}} + \frac{6 \left(x^{2} - 4\right) \left(\frac{16 x^{2}}{2 x^{2} + 1} - 1\right)}{2 x^{2} + 1} + 1 - \frac{6 \cdot \left(3 x^{2} - 4\right)}{2 x^{2} + 1}\right)}{\left(2 x^{2} + 1\right)^{3}}
The graph
Derivative of y=(x²-4)²/(2x²+1)³