sin(2*x) tan (x)
d / sin(2*x) \ --\tan (x)/ dx
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
/ / 2 \ \
sin(2*x) | \1 + tan (x)/*sin(2*x)|
tan (x)*|2*cos(2*x)*log(tan(x)) + ----------------------|
\ tan(x) /
/ 2 2 \
|/ / 2 \ \ / 2 \ / 2 \ |
sin(2*x) || \1 + tan (x)/*sin(2*x)| / 2 \ \1 + tan (x)/ *sin(2*x) 4*\1 + tan (x)/*cos(2*x)|
tan (x)*||2*cos(2*x)*log(tan(x)) + ----------------------| - 4*log(tan(x))*sin(2*x) + 2*\1 + tan (x)/*sin(2*x) - ----------------------- + ------------------------|
|\ tan(x) / 2 tan(x) |
\ tan (x) /
/ 3 / 2 \ 2 2 3 \
|/ / 2 \ \ / / 2 \ \ | / 2 \ / 2 \ | / 2 \ / 2 \ / 2 \ / 2 \ |
sin(2*x) || \1 + tan (x)/*sin(2*x)| | \1 + tan (x)/*sin(2*x)| | / 2 \ \1 + tan (x)/ *sin(2*x) 4*\1 + tan (x)/*cos(2*x)| / 2 \ 12*\1 + tan (x)/*sin(2*x) 6*\1 + tan (x)/ *cos(2*x) 4*\1 + tan (x)/ *sin(2*x) 2*\1 + tan (x)/ *sin(2*x) / 2 \ |
tan (x)*||2*cos(2*x)*log(tan(x)) + ----------------------| - 8*cos(2*x)*log(tan(x)) - 3*|2*cos(2*x)*log(tan(x)) + ----------------------|*|- 2*\1 + tan (x)/*sin(2*x) + 4*log(tan(x))*sin(2*x) + ----------------------- - ------------------------| + 12*\1 + tan (x)/*cos(2*x) - ------------------------- - ------------------------- - ------------------------- + ------------------------- + 4*\1 + tan (x)/*sin(2*x)*tan(x)|
|\ tan(x) / \ tan(x) / | 2 tan(x) | tan(x) 2 tan(x) 3 |
\ \ tan (x) / tan (x) tan (x) /