Mister Exam

Other calculators


y=tg^3(7x)/log(3x+2)

Derivative of y=tg^3(7x)/log(3x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    3       
 tan (7*x)  
------------
log(3*x + 2)
$$\frac{\tan^{3}{\left(7 x \right)}}{\log{\left(3 x + 2 \right)}}$$
tan(7*x)^3/log(3*x + 2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2      /           2     \              3           
tan (7*x)*\21 + 21*tan (7*x)/         3*tan (7*x)      
----------------------------- - -----------------------
         log(3*x + 2)                        2         
                                (3*x + 2)*log (3*x + 2)
$$\frac{\left(21 \tan^{2}{\left(7 x \right)} + 21\right) \tan^{2}{\left(7 x \right)}}{\log{\left(3 x + 2 \right)}} - \frac{3 \tan^{3}{\left(7 x \right)}}{\left(3 x + 2\right) \log{\left(3 x + 2 \right)}^{2}}$$
The second derivative [src]
  /                                                                          2      /         2      \\         
  |                                          /       2     \            3*tan (7*x)*|1 + ------------||         
  |   /       2     \ /         2     \   42*\1 + tan (7*x)/*tan(7*x)               \    log(2 + 3*x)/|         
3*|98*\1 + tan (7*x)/*\1 + 2*tan (7*x)/ - --------------------------- + ------------------------------|*tan(7*x)
  |                                          (2 + 3*x)*log(2 + 3*x)                 2                 |         
  \                                                                        (2 + 3*x) *log(2 + 3*x)    /         
----------------------------------------------------------------------------------------------------------------
                                                  log(2 + 3*x)                                                  
$$\frac{3 \left(\frac{3 \left(1 + \frac{2}{\log{\left(3 x + 2 \right)}}\right) \tan^{2}{\left(7 x \right)}}{\left(3 x + 2\right)^{2} \log{\left(3 x + 2 \right)}} + 98 \left(\tan^{2}{\left(7 x \right)} + 1\right) \left(2 \tan^{2}{\left(7 x \right)} + 1\right) - \frac{42 \left(\tan^{2}{\left(7 x \right)} + 1\right) \tan{\left(7 x \right)}}{\left(3 x + 2\right) \log{\left(3 x + 2 \right)}}\right) \tan{\left(7 x \right)}}{\log{\left(3 x + 2 \right)}}$$
The third derivative [src]
  /                                                                                           3      /         3               3      \                                                                                                    \
  |                                                                                     18*tan (7*x)*|1 + ------------ + -------------|                                                           2      /       2     \ /         2      \|
  |                    /               2                                            \                |    log(2 + 3*x)      2         |       /       2     \ /         2     \            189*tan (7*x)*\1 + tan (7*x)/*|1 + ------------||
  |    /       2     \ |/       2     \         4             2      /       2     \|                \                   log (2 + 3*x)/   882*\1 + tan (7*x)/*\1 + 2*tan (7*x)/*tan(7*x)                                 \    log(2 + 3*x)/|
3*|686*\1 + tan (7*x)/*\\1 + tan (7*x)/  + 2*tan (7*x) + 7*tan (7*x)*\1 + tan (7*x)// - ----------------------------------------------- - ---------------------------------------------- + ------------------------------------------------|
  |                                                                                                          3                                        (2 + 3*x)*log(2 + 3*x)                                    2                          |
  \                                                                                                 (2 + 3*x) *log(2 + 3*x)                                                                            (2 + 3*x) *log(2 + 3*x)             /
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                log(2 + 3*x)                                                                                                                
$$\frac{3 \left(\frac{189 \left(1 + \frac{2}{\log{\left(3 x + 2 \right)}}\right) \left(\tan^{2}{\left(7 x \right)} + 1\right) \tan^{2}{\left(7 x \right)}}{\left(3 x + 2\right)^{2} \log{\left(3 x + 2 \right)}} + 686 \left(\tan^{2}{\left(7 x \right)} + 1\right) \left(\left(\tan^{2}{\left(7 x \right)} + 1\right)^{2} + 7 \left(\tan^{2}{\left(7 x \right)} + 1\right) \tan^{2}{\left(7 x \right)} + 2 \tan^{4}{\left(7 x \right)}\right) - \frac{882 \left(\tan^{2}{\left(7 x \right)} + 1\right) \left(2 \tan^{2}{\left(7 x \right)} + 1\right) \tan{\left(7 x \right)}}{\left(3 x + 2\right) \log{\left(3 x + 2 \right)}} - \frac{18 \left(1 + \frac{3}{\log{\left(3 x + 2 \right)}} + \frac{3}{\log{\left(3 x + 2 \right)}^{2}}\right) \tan^{3}{\left(7 x \right)}}{\left(3 x + 2\right)^{3} \log{\left(3 x + 2 \right)}}\right)}{\log{\left(3 x + 2 \right)}}$$
The graph
Derivative of y=tg^3(7x)/log(3x+2)