Mister Exam

Other calculators


y=tg4x-2x^4-10x

Derivative of y=tg4x-2x^4-10x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
              4       
tan(4*x) - 2*x  - 10*x
10x+(2x4+tan(4x))- 10 x + \left(- 2 x^{4} + \tan{\left(4 x \right)}\right)
tan(4*x) - 2*x^4 - 10*x
Detail solution
  1. Differentiate 10x+(2x4+tan(4x))- 10 x + \left(- 2 x^{4} + \tan{\left(4 x \right)}\right) term by term:

    1. Differentiate 2x4+tan(4x)- 2 x^{4} + \tan{\left(4 x \right)} term by term:

      1. Rewrite the function to be differentiated:

        tan(4x)=sin(4x)cos(4x)\tan{\left(4 x \right)} = \frac{\sin{\left(4 x \right)}}{\cos{\left(4 x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(4x)f{\left(x \right)} = \sin{\left(4 x \right)} and g(x)=cos(4x)g{\left(x \right)} = \cos{\left(4 x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4cos(4x)4 \cos{\left(4 x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4sin(4x)- 4 \sin{\left(4 x \right)}

        Now plug in to the quotient rule:

        4sin2(4x)+4cos2(4x)cos2(4x)\frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)}}

      3. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x4x^{4} goes to 4x34 x^{3}

        So, the result is: 8x3- 8 x^{3}

      The result is: 8x3+4sin2(4x)+4cos2(4x)cos2(4x)- 8 x^{3} + \frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)}}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 10-10

    The result is: 8x3+4sin2(4x)+4cos2(4x)cos2(4x)10- 8 x^{3} + \frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)}} - 10

  2. Now simplify:

    8x3+4tan2(4x)6- 8 x^{3} + 4 \tan^{2}{\left(4 x \right)} - 6


The answer is:

8x3+4tan2(4x)6- 8 x^{3} + 4 \tan^{2}{\left(4 x \right)} - 6

The graph
02468-8-6-4-2-1010-250000250000
The first derivative [src]
        3        2     
-6 - 8*x  + 4*tan (4*x)
8x3+4tan2(4x)6- 8 x^{3} + 4 \tan^{2}{\left(4 x \right)} - 6
The second derivative [src]
  /     2     /       2     \         \
8*\- 3*x  + 4*\1 + tan (4*x)/*tan(4*x)/
8(3x2+4(tan2(4x)+1)tan(4x))8 \left(- 3 x^{2} + 4 \left(\tan^{2}{\left(4 x \right)} + 1\right) \tan{\left(4 x \right)}\right)
The third derivative [src]
   /                        2                               \
   |         /       2     \          2      /       2     \|
16*\-3*x + 8*\1 + tan (4*x)/  + 16*tan (4*x)*\1 + tan (4*x)//
16(3x+8(tan2(4x)+1)2+16(tan2(4x)+1)tan2(4x))16 \left(- 3 x + 8 \left(\tan^{2}{\left(4 x \right)} + 1\right)^{2} + 16 \left(\tan^{2}{\left(4 x \right)} + 1\right) \tan^{2}{\left(4 x \right)}\right)
3-я производная [src]
   /                        2                               \
   |         /       2     \          2      /       2     \|
16*\-3*x + 8*\1 + tan (4*x)/  + 16*tan (4*x)*\1 + tan (4*x)//
16(3x+8(tan2(4x)+1)2+16(tan2(4x)+1)tan2(4x))16 \left(- 3 x + 8 \left(\tan^{2}{\left(4 x \right)} + 1\right)^{2} + 16 \left(\tan^{2}{\left(4 x \right)} + 1\right) \tan^{2}{\left(4 x \right)}\right)
The graph
Derivative of y=tg4x-2x^4-10x