Mister Exam

Derivative of y=tan²x²+5x-2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        / 2\          
        \2 /          
(tan(x))     + 5*x - 2
$$5 x + \tan^{2^{2}}{\left(x \right)} - 2$$
  /        / 2\          \
d |        \2 /          |
--\(tan(x))     + 5*x - 2/
dx                        
$$\frac{d}{d x} \left(5 x + \tan^{2^{2}}{\left(x \right)} - 2\right)$$
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    5. The derivative of the constant is zero.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
            / 2\                
            \2 / /         2   \
    (tan(x))    *\4 + 4*tan (x)/
5 + ----------------------------
               tan(x)           
$$\frac{\left(4 \tan^{2}{\left(x \right)} + 4\right) \tan^{2^{2}}{\left(x \right)}}{\tan{\left(x \right)}} + 5$$
The second derivative [src]
     2    /       2   \ /         2   \
4*tan (x)*\1 + tan (x)/*\3 + 5*tan (x)/
$$4 \left(\tan^{2}{\left(x \right)} + 1\right) \left(5 \tan^{2}{\left(x \right)} + 3\right) \tan^{2}{\left(x \right)}$$
The third derivative [src]
                /                           2                           \       
  /       2   \ |     4        /       2   \          2    /       2   \|       
8*\1 + tan (x)/*\2*tan (x) + 3*\1 + tan (x)/  + 10*tan (x)*\1 + tan (x)//*tan(x)
$$8 \left(\tan^{2}{\left(x \right)} + 1\right) \left(2 \tan^{4}{\left(x \right)} + 10 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + 3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}\right) \tan{\left(x \right)}$$
The graph
Derivative of y=tan²x²+5x-2