Mister Exam

Derivative of y=tan²(x²+5x-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/ 2          \
tan \x  + 5*x - 2/
$$\tan^{2}{\left(\left(x^{2} + 5 x\right) - 2 \right)}$$
tan(x^2 + 5*x - 2)^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          3. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          3. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  /       2/ 2          \\              / 2          \
2*\1 + tan \x  + 5*x - 2//*(5 + 2*x)*tan\x  + 5*x - 2/
$$2 \left(2 x + 5\right) \left(\tan^{2}{\left(\left(x^{2} + 5 x\right) - 2 \right)} + 1\right) \tan{\left(\left(x^{2} + 5 x\right) - 2 \right)}$$
The second derivative [src]
  /       2/      2      \\ /     /      2      \            2 /       2/      2      \\              2    2/      2      \\
2*\1 + tan \-2 + x  + 5*x//*\2*tan\-2 + x  + 5*x/ + (5 + 2*x) *\1 + tan \-2 + x  + 5*x// + 2*(5 + 2*x) *tan \-2 + x  + 5*x//
$$2 \left(\tan^{2}{\left(x^{2} + 5 x - 2 \right)} + 1\right) \left(\left(2 x + 5\right)^{2} \left(\tan^{2}{\left(x^{2} + 5 x - 2 \right)} + 1\right) + 2 \left(2 x + 5\right)^{2} \tan^{2}{\left(x^{2} + 5 x - 2 \right)} + 2 \tan{\left(x^{2} + 5 x - 2 \right)}\right)$$
The third derivative [src]
  /       2/      2      \\           /         2/      2      \              2    3/      2      \              2 /       2/      2      \\    /      2      \\
4*\1 + tan \-2 + x  + 5*x//*(5 + 2*x)*\3 + 9*tan \-2 + x  + 5*x/ + 2*(5 + 2*x) *tan \-2 + x  + 5*x/ + 4*(5 + 2*x) *\1 + tan \-2 + x  + 5*x//*tan\-2 + x  + 5*x//
$$4 \left(2 x + 5\right) \left(\tan^{2}{\left(x^{2} + 5 x - 2 \right)} + 1\right) \left(4 \left(2 x + 5\right)^{2} \left(\tan^{2}{\left(x^{2} + 5 x - 2 \right)} + 1\right) \tan{\left(x^{2} + 5 x - 2 \right)} + 2 \left(2 x + 5\right)^{2} \tan^{3}{\left(x^{2} + 5 x - 2 \right)} + 9 \tan^{2}{\left(x^{2} + 5 x - 2 \right)} + 3\right)$$
The graph
Derivative of y=tan²(x²+5x-2)