Mister Exam

Other calculators


y=sqrt(x^2-2x+5)

Derivative of y=sqrt(x^2-2x+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ______________
  /  2           
\/  x  - 2*x + 5 
x22x+5\sqrt{x^{2} - 2 x + 5}
  /   ______________\
d |  /  2           |
--\\/  x  - 2*x + 5 /
dx                   
ddxx22x+5\frac{d}{d x} \sqrt{x^{2} - 2 x + 5}
Detail solution
  1. Let u=x22x+5u = x^{2} - 2 x + 5.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx(x22x+5)\frac{d}{d x} \left(x^{2} - 2 x + 5\right):

    1. Differentiate x22x+5x^{2} - 2 x + 5 term by term:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        So, the result is: 2-2

      3. The derivative of the constant 55 is zero.

      The result is: 2x22 x - 2

    The result of the chain rule is:

    2x22x22x+5\frac{2 x - 2}{2 \sqrt{x^{2} - 2 x + 5}}

  4. Now simplify:

    x1x22x+5\frac{x - 1}{\sqrt{x^{2} - 2 x + 5}}


The answer is:

x1x22x+5\frac{x - 1}{\sqrt{x^{2} - 2 x + 5}}

The graph
02468-8-6-4-2-101020-10
The first derivative [src]
      -1 + x     
-----------------
   ______________
  /  2           
\/  x  - 2*x + 5 
x1x22x+5\frac{x - 1}{\sqrt{x^{2} - 2 x + 5}}
The second derivative [src]
              2  
      (-1 + x)   
 1 - ------------
          2      
     5 + x  - 2*x
-----------------
   ______________
  /      2       
\/  5 + x  - 2*x 
(x1)2x22x+5+1x22x+5\frac{- \frac{\left(x - 1\right)^{2}}{x^{2} - 2 x + 5} + 1}{\sqrt{x^{2} - 2 x + 5}}
The third derivative [src]
           /              2  \
           |      (-1 + x)   |
3*(-1 + x)*|-1 + ------------|
           |          2      |
           \     5 + x  - 2*x/
------------------------------
                    3/2       
      /     2      \          
      \5 + x  - 2*x/          
3(x1)((x1)2x22x+51)(x22x+5)32\frac{3 \left(x - 1\right) \left(\frac{\left(x - 1\right)^{2}}{x^{2} - 2 x + 5} - 1\right)}{\left(x^{2} - 2 x + 5\right)^{\frac{3}{2}}}
The graph
Derivative of y=sqrt(x^2-2x+5)