Don't know the steps in finding this derivative.
But the derivative is
The answer is:
tan(x) ------ 2 // 2 \ / ___\ tan(x)\ x *|\1 + tan (x)/*log\\/ x / + ------| \ 2*x /
tan(x) / /tan(x) / 2 \ \ /tan(x) / 2 \ / ___\\ \ ------ | 2 |------ + \1 + tan (x)/*log(x)|*|------ + 2*\1 + tan (x)/*log\\/ x /| | 2 |1 + tan (x) tan(x) \ x / \ x / / 2 \ / ___\ | x *|----------- - ------ + --------------------------------------------------------------------- + 2*\1 + tan (x)/*log\\/ x /*tan(x)| | x 2 4 | \ 2*x /
/ / / 2 \ \ / / 2 \ \ \ | /tan(x) / 2 \ \ | tan(x) 2*\1 + tan (x)/ / 2 \ / ___\ | /tan(x) / 2 \ / ___\\ | tan(x) 2*\1 + tan (x)/ / 2 \ | 2 | tan(x) | |------ + \1 + tan (x)/*log(x)|*|- ------ + --------------- + 4*\1 + tan (x)/*log\\/ x /*tan(x)| |------ + 2*\1 + tan (x)/*log\\/ x /|*|- ------ + --------------- + 2*\1 + tan (x)/*log(x)*tan(x)| /tan(x) / 2 \ \ /tan(x) / 2 \ / ___\\ | ------ | \ x / | 2 x | 2 / 2 \ \ x / | 2 x | |------ + \1 + tan (x)/*log(x)| *|------ + 2*\1 + tan (x)/*log\\/ x /| / 2 \ | 2 |tan(x) \ x / / 2 \ / ___\ 3*\1 + tan (x)/ \ x / \ x / \ x / 3*\1 + tan (x)/*tan(x) 2 / 2 \ / ___\| x *|------ + ------------------------------------------------------------------------------------------------ + 2*\1 + tan (x)/ *log\\/ x / - --------------- + -------------------------------------------------------------------------------------------------- + ---------------------------------------------------------------------- + ---------------------- + 4*tan (x)*\1 + tan (x)/*log\\/ x /| | 3 2 2 4 8 x | \ x 2*x /