Mister Exam

Other calculators

Derivative of y=sqrt(2ax-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
              2
  /         2\ 
t*\2*a*x - x / 
t(2axx2)2t \left(2 a x - x^{2}\right)^{2}
  /              2\
d |  /         2\ |
--\t*\2*a*x - x / /
dx                 
xt(2axx2)2\frac{\partial}{\partial x} t \left(2 a x - x^{2}\right)^{2}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=2axx2u = 2 a x - x^{2}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by x(2axx2)\frac{\partial}{\partial x} \left(2 a x - x^{2}\right):

      1. Differentiate 2axx22 a x - x^{2} term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 2a2 a

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          So, the result is: 2x- 2 x

        The result is: 2a2x2 a - 2 x

      The result of the chain rule is:

      (2a2x)(4ax2x2)\left(2 a - 2 x\right) \left(4 a x - 2 x^{2}\right)

    So, the result is: t(2a2x)(4ax2x2)t \left(2 a - 2 x\right) \left(4 a x - 2 x^{2}\right)

  2. Now simplify:

    4tx(ax)(2ax)4 t x \left(a - x\right) \left(2 a - x\right)


The answer is:

4tx(ax)(2ax)4 t x \left(a - x\right) \left(2 a - x\right)

The first derivative [src]
               /         2\
t*(-4*x + 4*a)*\2*a*x - x /
t(4a4x)(2axx2)t \left(4 a - 4 x\right) \left(2 a x - x^{2}\right)
The second derivative [src]
    / 2            2        \
4*t*\x  + 2*(a - x)  - 2*a*x/
4t(2ax+x2+2(ax)2)4 t \left(- 2 a x + x^{2} + 2 \left(a - x\right)^{2}\right)
The third derivative [src]
-24*t*(a - x)
24t(ax)- 24 t \left(a - x\right)