Mister Exam

Derivative of sin^2ax

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2     
sin (a*x)
sin2(ax)\sin^{2}{\left(a x \right)}
d /   2     \
--\sin (a*x)/
dx           
xsin2(ax)\frac{\partial}{\partial x} \sin^{2}{\left(a x \right)}
Detail solution
  1. Let u=sin(ax)u = \sin{\left(a x \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by xsin(ax)\frac{\partial}{\partial x} \sin{\left(a x \right)}:

    1. Let u=axu = a x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by xax\frac{\partial}{\partial x} a x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: aa

      The result of the chain rule is:

      acos(ax)a \cos{\left(a x \right)}

    The result of the chain rule is:

    2asin(ax)cos(ax)2 a \sin{\left(a x \right)} \cos{\left(a x \right)}

  4. Now simplify:

    asin(2ax)a \sin{\left(2 a x \right)}


The answer is:

asin(2ax)a \sin{\left(2 a x \right)}

The first derivative [src]
2*a*cos(a*x)*sin(a*x)
2asin(ax)cos(ax)2 a \sin{\left(a x \right)} \cos{\left(a x \right)}
The second derivative [src]
   2 /   2           2     \
2*a *\cos (a*x) - sin (a*x)/
2a2(sin2(ax)+cos2(ax))2 a^{2} \left(- \sin^{2}{\left(a x \right)} + \cos^{2}{\left(a x \right)}\right)
The third derivative [src]
    3                  
-8*a *cos(a*x)*sin(a*x)
8a3sin(ax)cos(ax)- 8 a^{3} \sin{\left(a x \right)} \cos{\left(a x \right)}