_____________ / 4/x - 3\ / sin |-----| \/ \ x /
sqrt(sin((x - 3)/x)^4)
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
_____________
/ 4/x - 3\ /1 x - 3\ /x - 3\
2* / sin |-----| *|- - -----|*cos|-----|
\/ \ x / |x 2 | \ x /
\ x /
------------------------------------------
/x - 3\
sin|-----|
\ x /
/ /-3 + x\ 2/-3 + x\ / -3 + x\\
______________ | 2*cos|------| cos |------|*|1 - ------||
/ 4/-3 + x\ / -3 + x\ | -3 + x \ x / \ x / \ x /|
2* / sin |------| *|1 - ------|*|-1 + ------ - ------------- + -------------------------|
\/ \ x / \ x / | x /-3 + x\ 2/-3 + x\ |
| sin|------| sin |------| |
\ \ x / \ x / /
-------------------------------------------------------------------------------------------
2
x
/ 2 \
| /-3 + x\ 2/-3 + x\ / -3 + x\ / -3 + x\ /-3 + x\|
______________ | 3*cos|------| 3*cos |------|*|1 - ------| 2*|1 - ------| *cos|------||
/ 4/-3 + x\ / -3 + x\ | 3*(-3 + x) \ x / \ x / \ x / \ x / \ x /|
4* / sin |------| *|1 - ------|*|3 - ---------- + ------------- - --------------------------- - ---------------------------|
\/ \ x / \ x / | x /-3 + x\ 2/-3 + x\ /-3 + x\ |
| sin|------| sin |------| sin|------| |
\ \ x / \ x / \ x / /
------------------------------------------------------------------------------------------------------------------------------
3
x