Mister Exam

Other calculators

Derivative of sqrt(sin^4((x-3)/x),4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    _____________
   /    4/x - 3\ 
  /  sin |-----| 
\/       \  x  / 
11sin4(x3x)\sqrt{\frac{1}{\frac{1}{\sin^{4}{\left(\frac{x - 3}{x} \right)}}}}
sqrt(sin((x - 3)/x)^4)
Detail solution
  1. Let u=sin4(x+3x)u = \sin^{4}{\left(\frac{x + -3}{x} \right)}.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddxsin4(x+3x)\frac{d}{d x} \sin^{4}{\left(\frac{x + -3}{x} \right)}:

    1. Let u=sin(x+3x)u = \sin{\left(\frac{x + -3}{x} \right)}.

    2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

    3. Then, apply the chain rule. Multiply by ddxsin(x+3x)\frac{d}{d x} \sin{\left(\frac{x + -3}{x} \right)}:

      1. Let u=x+3xu = \frac{x + -3}{x}.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx+3x\frac{d}{d x} \frac{x + -3}{x}:

        1. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=x3f{\left(x \right)} = x - 3 and g(x)=xg{\left(x \right)} = x.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Differentiate x3x - 3 term by term:

            1. The derivative of the constant 3-3 is zero.

            2. Apply the power rule: xx goes to 11

            The result is: 11

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Apply the power rule: xx goes to 11

          Now plug in to the quotient rule:

          3x2\frac{3}{x^{2}}

        The result of the chain rule is:

        3cos(x+3x)x2\frac{3 \cos{\left(\frac{x + -3}{x} \right)}}{x^{2}}

      The result of the chain rule is:

      12sin3(x+3x)cos(x+3x)x2\frac{12 \sin^{3}{\left(\frac{x + -3}{x} \right)} \cos{\left(\frac{x + -3}{x} \right)}}{x^{2}}

    The result of the chain rule is:

    6sin3(x+3x)cos(x+3x)x2sin4(x+3x)\frac{6 \sin^{3}{\left(\frac{x + -3}{x} \right)} \cos{\left(\frac{x + -3}{x} \right)}}{x^{2} \sqrt{\sin^{4}{\left(\frac{x + -3}{x} \right)}}}

  4. Now simplify:

    6sin3(x3x)cos(x3x)x2sin4(x3x)\frac{6 \sin^{3}{\left(\frac{x - 3}{x} \right)} \cos{\left(\frac{x - 3}{x} \right)}}{x^{2} \sqrt{\sin^{4}{\left(\frac{x - 3}{x} \right)}}}


The answer is:

6sin3(x3x)cos(x3x)x2sin4(x3x)\frac{6 \sin^{3}{\left(\frac{x - 3}{x} \right)} \cos{\left(\frac{x - 3}{x} \right)}}{x^{2} \sqrt{\sin^{4}{\left(\frac{x - 3}{x} \right)}}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
      _____________                       
     /    4/x - 3\  /1   x - 3\    /x - 3\
2*  /  sin |-----| *|- - -----|*cos|-----|
  \/       \  x  /  |x      2 |    \  x  /
                    \      x  /           
------------------------------------------
                   /x - 3\                
                sin|-----|                
                   \  x  /                
2(1xx+3x2)sin4(x+3x)cos(x+3x)sin(x+3x)\frac{2 \left(\frac{1}{x} - \frac{x + -3}{x^{2}}\right) \sqrt{\sin^{4}{\left(\frac{x + -3}{x} \right)}} \cos{\left(\frac{x + -3}{x} \right)}}{\sin{\left(\frac{x + -3}{x} \right)}}
The second derivative [src]
                                  /                   /-3 + x\      2/-3 + x\ /    -3 + x\\
      ______________              |              2*cos|------|   cos |------|*|1 - ------||
     /    4/-3 + x\  /    -3 + x\ |     -3 + x        \  x   /       \  x   / \      x   /|
2*  /  sin |------| *|1 - ------|*|-1 + ------ - ------------- + -------------------------|
  \/       \  x   /  \      x   / |       x          /-3 + x\              2/-3 + x\      |
                                  |               sin|------|           sin |------|      |
                                  \                  \  x   /               \  x   /      /
-------------------------------------------------------------------------------------------
                                              2                                            
                                             x                                             
2(1x3x)((1x3x)cos2(x3x)sin2(x3x)12cos(x3x)sin(x3x)+x3x)sin4(x3x)x2\frac{2 \left(1 - \frac{x - 3}{x}\right) \left(\frac{\left(1 - \frac{x - 3}{x}\right) \cos^{2}{\left(\frac{x - 3}{x} \right)}}{\sin^{2}{\left(\frac{x - 3}{x} \right)}} - 1 - \frac{2 \cos{\left(\frac{x - 3}{x} \right)}}{\sin{\left(\frac{x - 3}{x} \right)}} + \frac{x - 3}{x}\right) \sqrt{\sin^{4}{\left(\frac{x - 3}{x} \right)}}}{x^{2}}
The third derivative [src]
                                  /                                                                             2            \
                                  |                      /-3 + x\        2/-3 + x\ /    -3 + x\     /    -3 + x\     /-3 + x\|
      ______________              |                 3*cos|------|   3*cos |------|*|1 - ------|   2*|1 - ------| *cos|------||
     /    4/-3 + x\  /    -3 + x\ |    3*(-3 + x)        \  x   /         \  x   / \      x   /     \      x   /     \  x   /|
4*  /  sin |------| *|1 - ------|*|3 - ---------- + ------------- - --------------------------- - ---------------------------|
  \/       \  x   /  \      x   / |        x            /-3 + x\               2/-3 + x\                     /-3 + x\        |
                                  |                  sin|------|            sin |------|                  sin|------|        |
                                  \                     \  x   /                \  x   /                     \  x   /        /
------------------------------------------------------------------------------------------------------------------------------
                                                               3                                                              
                                                              x                                                               
/ 2 \ | /-3 + x\ 2/-3 + x\ / -3 + x\ / -3 + x\ /-3 + x\| ______________ | 3*cos|------| 3*cos |------|*|1 - ------| 2*|1 - ------| *cos|------|| / 4/-3 + x\ / -3 + x\ | 3*(-3 + x) \ x / \ x / \ x / \ x / \ x /| 4* / sin |------| *|1 - ------|*|3 - ---------- + ------------- - --------------------------- - ---------------------------| \/ \ x / \ x / | x /-3 + x\ 2/-3 + x\ /-3 + x\ | | sin|------| sin |------| sin|------| | \ \ x / \ x / \ x / / ------------------------------------------------------------------------------------------------------------------------------ 3 x