_____________ / 4/x - 3\ / sin |-----| \/ \ x /
sqrt(sin((x - 3)/x)^4)
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
_____________ / 4/x - 3\ /1 x - 3\ /x - 3\ 2* / sin |-----| *|- - -----|*cos|-----| \/ \ x / |x 2 | \ x / \ x / ------------------------------------------ /x - 3\ sin|-----| \ x /
/ /-3 + x\ 2/-3 + x\ / -3 + x\\ ______________ | 2*cos|------| cos |------|*|1 - ------|| / 4/-3 + x\ / -3 + x\ | -3 + x \ x / \ x / \ x /| 2* / sin |------| *|1 - ------|*|-1 + ------ - ------------- + -------------------------| \/ \ x / \ x / | x /-3 + x\ 2/-3 + x\ | | sin|------| sin |------| | \ \ x / \ x / / ------------------------------------------------------------------------------------------- 2 x
/ 2 \ | /-3 + x\ 2/-3 + x\ / -3 + x\ / -3 + x\ /-3 + x\| ______________ | 3*cos|------| 3*cos |------|*|1 - ------| 2*|1 - ------| *cos|------|| / 4/-3 + x\ / -3 + x\ | 3*(-3 + x) \ x / \ x / \ x / \ x / \ x /| 4* / sin |------| *|1 - ------|*|3 - ---------- + ------------- - --------------------------- - ---------------------------| \/ \ x / \ x / | x /-3 + x\ 2/-3 + x\ /-3 + x\ | | sin|------| sin |------| sin|------| | \ \ x / \ x / \ x / / ------------------------------------------------------------------------------------------------------------------------------ 3 x