Mister Exam

Other calculators


y=sqrt(1-x^3)

Derivative of y=sqrt(1-x^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ________
  /      3 
\/  1 - x  
$$\sqrt{1 - x^{3}}$$
sqrt(1 - x^3)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
        2    
    -3*x     
-------------
     ________
    /      3 
2*\/  1 - x  
$$- \frac{3 x^{2}}{2 \sqrt{1 - x^{3}}}$$
The second derivative [src]
     /          3   \
     |       3*x    |
-3*x*|1 + ----------|
     |      /     3\|
     \    4*\1 - x //
---------------------
        ________     
       /      3      
     \/  1 - x       
$$- \frac{3 x \left(\frac{3 x^{3}}{4 \left(1 - x^{3}\right)} + 1\right)}{\sqrt{1 - x^{3}}}$$
The third derivative [src]
   /          3             6   \
   |       9*x          27*x    |
-3*|1 + ---------- + -----------|
   |      /     3\             2|
   |    2*\1 - x /     /     3\ |
   \                 8*\1 - x / /
---------------------------------
              ________           
             /      3            
           \/  1 - x             
$$- \frac{3 \left(\frac{27 x^{6}}{8 \left(1 - x^{3}\right)^{2}} + \frac{9 x^{3}}{2 \left(1 - x^{3}\right)} + 1\right)}{\sqrt{1 - x^{3}}}$$
The graph
Derivative of y=sqrt(1-x^3)