Mister Exam

Derivative of sin(cosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(cos(x))
$$\sin{\left(\cos{\left(x \right)} \right)}$$
d              
--(sin(cos(x)))
dx             
$$\frac{d}{d x} \sin{\left(\cos{\left(x \right)} \right)}$$
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of cosine is negative sine:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
-cos(cos(x))*sin(x)
$$- \sin{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}$$
The second derivative [src]
 /   2                                    \
-\sin (x)*sin(cos(x)) + cos(x)*cos(cos(x))/
$$- (\sin^{2}{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} + \cos{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)})$$
The third derivative [src]
/   2                                                    \       
\sin (x)*cos(cos(x)) - 3*cos(x)*sin(cos(x)) + cos(cos(x))/*sin(x)
$$\left(\sin^{2}{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)} - 3 \sin{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)} + \cos{\left(\cos{\left(x \right)} \right)}\right) \sin{\left(x \right)}$$
The graph
Derivative of sin(cosx)