Detail solution
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- \sin{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}$$
The second derivative
[src]
/ 2 \
-\sin (x)*sin(cos(x)) + cos(x)*cos(cos(x))/
$$- (\sin^{2}{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} + \cos{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)})$$
The third derivative
[src]
/ 2 \
\sin (x)*cos(cos(x)) - 3*cos(x)*sin(cos(x)) + cos(cos(x))/*sin(x)
$$\left(\sin^{2}{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)} - 3 \sin{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)} + \cos{\left(\cos{\left(x \right)} \right)}\right) \sin{\left(x \right)}$$