___ 2 3 \/ x *sin (x) + 3*cos (4)*x
sqrt(x)*sin(x)^2 + (3*cos(4)^3)*x
Differentiate term by term:
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now simplify:
The answer is:
2
3 sin (x) ___
3*cos (4) + ------- + 2*\/ x *cos(x)*sin(x)
___
2*\/ x
2
___ 2 ___ 2 sin (x) 2*cos(x)*sin(x)
- 2*\/ x *sin (x) + 2*\/ x *cos (x) - ------- + ---------------
3/2 ___
4*x \/ x
2 2 2
3*sin (x) 3*cos (x) 3*sin (x) ___ 3*cos(x)*sin(x)
- --------- + --------- + --------- - 8*\/ x *cos(x)*sin(x) - ---------------
___ ___ 5/2 3/2
\/ x \/ x 8*x 2*x