Mister Exam

Other calculators


-2x/(1+x^2)^2

Derivative of -2x/(1+x^2)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   -2*x  
---------
        2
/     2\ 
\1 + x / 
$$\frac{\left(-1\right) 2 x}{\left(x^{2} + 1\right)^{2}}$$
(-2*x)/(1 + x^2)^2
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                    2  
      2          8*x   
- --------- + ---------
          2           3
  /     2\    /     2\ 
  \1 + x /    \1 + x / 
$$\frac{8 x^{2}}{\left(x^{2} + 1\right)^{3}} - \frac{2}{\left(x^{2} + 1\right)^{2}}$$
The second derivative [src]
    /        2 \
    |     6*x  |
8*x*|3 - ------|
    |         2|
    \    1 + x /
----------------
           3    
   /     2\     
   \1 + x /     
$$\frac{8 x \left(- \frac{6 x^{2}}{x^{2} + 1} + 3\right)}{\left(x^{2} + 1\right)^{3}}$$
The third derivative [src]
   /                  /         2 \\
   |                2 |      8*x  ||
   |             2*x *|-3 + ------||
   |        2         |          2||
   |     6*x          \     1 + x /|
24*|1 - ------ + ------------------|
   |         2              2      |
   \    1 + x          1 + x       /
------------------------------------
                     3              
             /     2\               
             \1 + x /               
$$\frac{24 \left(\frac{2 x^{2} \left(\frac{8 x^{2}}{x^{2} + 1} - 3\right)}{x^{2} + 1} - \frac{6 x^{2}}{x^{2} + 1} + 1\right)}{\left(x^{2} + 1\right)^{3}}$$
The graph
Derivative of -2x/(1+x^2)^2