Mister Exam

Other calculators


y=sinx*(8e^x-6x)

Derivative of y=sinx*(8e^x-6x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       /   x      \
sin(x)*\8*e  - 6*x/
(6x+8ex)sin(x)\left(- 6 x + 8 e^{x}\right) \sin{\left(x \right)}
d /       /   x      \\
--\sin(x)*\8*e  - 6*x//
dx                     
ddx(6x+8ex)sin(x)\frac{d}{d x} \left(- 6 x + 8 e^{x}\right) \sin{\left(x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    g(x)=6x+8exg{\left(x \right)} = - 6 x + 8 e^{x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate 6x+8ex- 6 x + 8 e^{x} term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of exe^{x} is itself.

        So, the result is: 8ex8 e^{x}

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 66

        So, the result is: 6-6

      The result is: 8ex68 e^{x} - 6

    The result is: (6x+8ex)cos(x)+(8ex6)sin(x)\left(- 6 x + 8 e^{x}\right) \cos{\left(x \right)} + \left(8 e^{x} - 6\right) \sin{\left(x \right)}

  2. Now simplify:

    2(3x+4ex)cos(x)+2(4ex3)sin(x)2 \left(- 3 x + 4 e^{x}\right) \cos{\left(x \right)} + 2 \cdot \left(4 e^{x} - 3\right) \sin{\left(x \right)}


The answer is:

2(3x+4ex)cos(x)+2(4ex3)sin(x)2 \left(- 3 x + 4 e^{x}\right) \cos{\left(x \right)} + 2 \cdot \left(4 e^{x} - 3\right) \sin{\left(x \right)}

The graph
02468-8-6-4-2-1010-500000500000
The first derivative [src]
/        x\          /   x      \       
\-6 + 8*e /*sin(x) + \8*e  - 6*x/*cos(x)
(6x+8ex)cos(x)+(8ex6)sin(x)\left(- 6 x + 8 e^{x}\right) \cos{\left(x \right)} + \left(8 e^{x} - 6\right) \sin{\left(x \right)}
The second derivative [src]
  //     x      \            /        x\             x       \
2*\\- 4*e  + 3*x/*sin(x) + 2*\-3 + 4*e /*cos(x) + 4*e *sin(x)/
2((3x4ex)sin(x)+2(4ex3)cos(x)+4exsin(x))2 \left(\left(3 x - 4 e^{x}\right) \sin{\left(x \right)} + 2 \cdot \left(4 e^{x} - 3\right) \cos{\left(x \right)} + 4 e^{x} \sin{\left(x \right)}\right)
The third derivative [src]
  //     x      \            /        x\             x                     x\
2*\\- 4*e  + 3*x/*cos(x) - 3*\-3 + 4*e /*sin(x) + 4*e *sin(x) + 12*cos(x)*e /
2((3x4ex)cos(x)3(4ex3)sin(x)+4exsin(x)+12excos(x))2 \left(\left(3 x - 4 e^{x}\right) \cos{\left(x \right)} - 3 \cdot \left(4 e^{x} - 3\right) \sin{\left(x \right)} + 4 e^{x} \sin{\left(x \right)} + 12 e^{x} \cos{\left(x \right)}\right)
The graph
Derivative of y=sinx*(8e^x-6x)