Mister Exam

Other calculators


y=sinx*(8e^x-6x)

Derivative of y=sinx*(8e^x-6x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       /   x      \
sin(x)*\8*e  - 6*x/
$$\left(- 6 x + 8 e^{x}\right) \sin{\left(x \right)}$$
d /       /   x      \\
--\sin(x)*\8*e  - 6*x//
dx                     
$$\frac{d}{d x} \left(- 6 x + 8 e^{x}\right) \sin{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of sine is cosine:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of is itself.

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/        x\          /   x      \       
\-6 + 8*e /*sin(x) + \8*e  - 6*x/*cos(x)
$$\left(- 6 x + 8 e^{x}\right) \cos{\left(x \right)} + \left(8 e^{x} - 6\right) \sin{\left(x \right)}$$
The second derivative [src]
  //     x      \            /        x\             x       \
2*\\- 4*e  + 3*x/*sin(x) + 2*\-3 + 4*e /*cos(x) + 4*e *sin(x)/
$$2 \left(\left(3 x - 4 e^{x}\right) \sin{\left(x \right)} + 2 \cdot \left(4 e^{x} - 3\right) \cos{\left(x \right)} + 4 e^{x} \sin{\left(x \right)}\right)$$
The third derivative [src]
  //     x      \            /        x\             x                     x\
2*\\- 4*e  + 3*x/*cos(x) - 3*\-3 + 4*e /*sin(x) + 4*e *sin(x) + 12*cos(x)*e /
$$2 \left(\left(3 x - 4 e^{x}\right) \cos{\left(x \right)} - 3 \cdot \left(4 e^{x} - 3\right) \sin{\left(x \right)} + 4 e^{x} \sin{\left(x \right)} + 12 e^{x} \cos{\left(x \right)}\right)$$
The graph
Derivative of y=sinx*(8e^x-6x)