Mister Exam

Other calculators


y=sinx/(2*x)+1

Derivative of y=sinx/(2*x)+1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(x)    
------ + 1
 2*x      
$$1 + \frac{\sin{\left(x \right)}}{2 x}$$
sin(x)/((2*x)) + 1
Detail solution
  1. Differentiate term by term:

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      Now plug in to the quotient rule:

    2. The derivative of the constant is zero.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 1           sin(x)
---*cos(x) - ------
2*x              2 
              2*x  
$$\frac{1}{2 x} \cos{\left(x \right)} - \frac{\sin{\left(x \right)}}{2 x^{2}}$$
The second derivative [src]
  sin(x)   sin(x)   cos(x)
- ------ + ------ - ------
    2         2       x   
             x            
--------------------------
            x             
$$\frac{- \frac{\sin{\left(x \right)}}{2} - \frac{\cos{\left(x \right)}}{x} + \frac{\sin{\left(x \right)}}{x^{2}}}{x}$$
The third derivative [src]
  cos(x)   3*sin(x)   3*cos(x)   3*sin(x)
- ------ - -------- + -------- + --------
    2          3          2        2*x   
              x          x               
-----------------------------------------
                    x                    
$$\frac{- \frac{\cos{\left(x \right)}}{2} + \frac{3 \sin{\left(x \right)}}{2 x} + \frac{3 \cos{\left(x \right)}}{x^{2}} - \frac{3 \sin{\left(x \right)}}{x^{3}}}{x}$$
The graph
Derivative of y=sinx/(2*x)+1