Mister Exam

Other calculators

Derivative of sin(x)/(2x+1)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  sin(x)  
----------
         2
(2*x + 1) 
$$\frac{\sin{\left(x \right)}}{\left(2 x + 1\right)^{2}}$$
sin(x)/(2*x + 1)^2
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  cos(x)     (-4 - 8*x)*sin(x)
---------- + -----------------
         2                4   
(2*x + 1)        (2*x + 1)    
$$\frac{\left(- 8 x - 4\right) \sin{\left(x \right)}}{\left(2 x + 1\right)^{4}} + \frac{\cos{\left(x \right)}}{\left(2 x + 1\right)^{2}}$$
The second derivative [src]
          8*cos(x)   24*sin(x) 
-sin(x) - -------- + ----------
          1 + 2*x             2
                     (1 + 2*x) 
-------------------------------
                    2          
           (1 + 2*x)           
$$\frac{- \sin{\left(x \right)} - \frac{8 \cos{\left(x \right)}}{2 x + 1} + \frac{24 \sin{\left(x \right)}}{\left(2 x + 1\right)^{2}}}{\left(2 x + 1\right)^{2}}$$
The third derivative [src]
          192*sin(x)   12*sin(x)   72*cos(x) 
-cos(x) - ---------- + --------- + ----------
                   3    1 + 2*x             2
          (1 + 2*x)                (1 + 2*x) 
---------------------------------------------
                           2                 
                  (1 + 2*x)                  
$$\frac{- \cos{\left(x \right)} + \frac{12 \sin{\left(x \right)}}{2 x + 1} + \frac{72 \cos{\left(x \right)}}{\left(2 x + 1\right)^{2}} - \frac{192 \sin{\left(x \right)}}{\left(2 x + 1\right)^{3}}}{\left(2 x + 1\right)^{2}}$$