Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
Apply the power rule: goes to
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
The first derivative
[src]
4 / 5\ / 5\
10*x *cos\x /*sin\x /
$$10 x^{4} \sin{\left(x^{5} \right)} \cos{\left(x^{5} \right)}$$
The second derivative
[src]
3 / 5 2/ 5\ / 5\ / 5\ 5 2/ 5\\
10*x *\- 5*x *sin \x / + 4*cos\x /*sin\x / + 5*x *cos \x //
$$10 x^{3} \left(- 5 x^{5} \sin^{2}{\left(x^{5} \right)} + 5 x^{5} \cos^{2}{\left(x^{5} \right)} + 4 \sin{\left(x^{5} \right)} \cos{\left(x^{5} \right)}\right)$$
The third derivative
[src]
2 / 5 2/ 5\ / 5\ / 5\ 5 2/ 5\ 10 / 5\ / 5\\
40*x *\- 15*x *sin \x / + 3*cos\x /*sin\x / + 15*x *cos \x / - 25*x *cos\x /*sin\x //
$$40 x^{2} \left(- 25 x^{10} \sin{\left(x^{5} \right)} \cos{\left(x^{5} \right)} - 15 x^{5} \sin^{2}{\left(x^{5} \right)} + 15 x^{5} \cos^{2}{\left(x^{5} \right)} + 3 \sin{\left(x^{5} \right)} \cos{\left(x^{5} \right)}\right)$$