Mister Exam

Other calculators


y=sin^2(x^5)

Derivative of y=sin^2(x^5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/ 5\
sin \x /
$$\sin^{2}{\left(x^{5} \right)}$$
sin(x^5)^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    4    / 5\    / 5\
10*x *cos\x /*sin\x /
$$10 x^{4} \sin{\left(x^{5} \right)} \cos{\left(x^{5} \right)}$$
The second derivative [src]
    3 /     5    2/ 5\        / 5\    / 5\      5    2/ 5\\
10*x *\- 5*x *sin \x / + 4*cos\x /*sin\x / + 5*x *cos \x //
$$10 x^{3} \left(- 5 x^{5} \sin^{2}{\left(x^{5} \right)} + 5 x^{5} \cos^{2}{\left(x^{5} \right)} + 4 \sin{\left(x^{5} \right)} \cos{\left(x^{5} \right)}\right)$$
The third derivative [src]
    2 /      5    2/ 5\        / 5\    / 5\       5    2/ 5\       10    / 5\    / 5\\
40*x *\- 15*x *sin \x / + 3*cos\x /*sin\x / + 15*x *cos \x / - 25*x  *cos\x /*sin\x //
$$40 x^{2} \left(- 25 x^{10} \sin{\left(x^{5} \right)} \cos{\left(x^{5} \right)} - 15 x^{5} \sin^{2}{\left(x^{5} \right)} + 15 x^{5} \cos^{2}{\left(x^{5} \right)} + 3 \sin{\left(x^{5} \right)} \cos{\left(x^{5} \right)}\right)$$
The graph
Derivative of y=sin^2(x^5)