Mister Exam

Other calculators


y=(sin^2)*x/2

Derivative of y=(sin^2)*x/2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2     
sin (x)*x
---------
    2    
$$\frac{x \sin^{2}{\left(x \right)}}{2}$$
(sin(x)^2*x)/2
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of sine is cosine:

        The result of the chain rule is:

      The result is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2                     
sin (x)                  
------- + x*cos(x)*sin(x)
   2                     
$$x \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\sin^{2}{\left(x \right)}}{2}$$
The second derivative [src]
    /   2         2   \                  
- x*\sin (x) - cos (x)/ + 2*cos(x)*sin(x)
$$- x \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) + 2 \sin{\left(x \right)} \cos{\left(x \right)}$$
3-я производная [src]
       2           2                       
- 3*sin (x) + 3*cos (x) - 4*x*cos(x)*sin(x)
$$- 4 x \sin{\left(x \right)} \cos{\left(x \right)} - 3 \sin^{2}{\left(x \right)} + 3 \cos^{2}{\left(x \right)}$$
The third derivative [src]
       2           2                       
- 3*sin (x) + 3*cos (x) - 4*x*cos(x)*sin(x)
$$- 4 x \sin{\left(x \right)} \cos{\left(x \right)} - 3 \sin^{2}{\left(x \right)} + 3 \cos^{2}{\left(x \right)}$$
The graph
Derivative of y=(sin^2)*x/2