Mister Exam

Other calculators


y=sin^3*x+arctg*4x

Derivative of y=sin^3*x+arctg*4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3               
sin (x) + atan(4*x)
$$\sin^{3}{\left(x \right)} + \operatorname{atan}{\left(4 x \right)}$$
d /   3               \
--\sin (x) + atan(4*x)/
dx                     
$$\frac{d}{d x} \left(\sin^{3}{\left(x \right)} + \operatorname{atan}{\left(4 x \right)}\right)$$
The graph
The first derivative [src]
    4            2          
--------- + 3*sin (x)*cos(x)
        2                   
1 + 16*x                    
$$3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \frac{4}{16 x^{2} + 1}$$
The second derivative [src]
       3         128*x            2          
- 3*sin (x) - ------------ + 6*cos (x)*sin(x)
                         2                   
              /        2\                    
              \1 + 16*x /                    
$$- \frac{128 x}{\left(16 x^{2} + 1\right)^{2}} - 3 \sin^{3}{\left(x \right)} + 6 \sin{\left(x \right)} \cos^{2}{\left(x \right)}$$
The third derivative [src]
                                                         2   
      128             3            2               8192*x    
- ------------ + 6*cos (x) - 21*sin (x)*cos(x) + ------------
             2                                              3
  /        2\                                    /        2\ 
  \1 + 16*x /                                    \1 + 16*x / 
$$\frac{8192 x^{2}}{\left(16 x^{2} + 1\right)^{3}} - 21 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + 6 \cos^{3}{\left(x \right)} - \frac{128}{\left(16 x^{2} + 1\right)^{2}}$$
The graph
Derivative of y=sin^3*x+arctg*4x