The first derivative
[src]
4 2
--------- + 3*sin (x)*cos(x)
2
1 + 16*x
$$3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \frac{4}{16 x^{2} + 1}$$
The second derivative
[src]
3 128*x 2
- 3*sin (x) - ------------ + 6*cos (x)*sin(x)
2
/ 2\
\1 + 16*x /
$$- \frac{128 x}{\left(16 x^{2} + 1\right)^{2}} - 3 \sin^{3}{\left(x \right)} + 6 \sin{\left(x \right)} \cos^{2}{\left(x \right)}$$
The third derivative
[src]
2
128 3 2 8192*x
- ------------ + 6*cos (x) - 21*sin (x)*cos(x) + ------------
2 3
/ 2\ / 2\
\1 + 16*x / \1 + 16*x /
$$\frac{8192 x^{2}}{\left(16 x^{2} + 1\right)^{3}} - 21 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + 6 \cos^{3}{\left(x \right)} - \frac{128}{\left(16 x^{2} + 1\right)^{2}}$$