Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
2 n -n *sin (cos(n*x))*cos(cos(n*x))*sin(n*x) ------------------------------------------ sin(cos(n*x))
/ 2 2 2 2 \ 3 n | 2 cos (cos(n*x))*sin (n*x) cos(n*x)*cos(cos(n*x)) n*cos (cos(n*x))*sin (n*x)| n *sin (cos(n*x))*|- sin (n*x) - ------------------------ - ---------------------- + --------------------------| | 2 sin(cos(n*x)) 2 | \ sin (cos(n*x)) sin (cos(n*x)) /
/ 2 3 2 2 2 3 2 2 3 2 2 \ 4 n | cos(cos(n*x)) 3*cos (cos(n*x))*cos(n*x) 2*cos (cos(n*x))*sin (n*x) 2*sin (n*x)*cos(cos(n*x)) n *cos (cos(n*x))*sin (n*x) 3*n*cos (cos(n*x))*cos(n*x) 3*n*cos (cos(n*x))*sin (n*x) 3*n*sin (n*x)*cos(cos(n*x))| n *sin (cos(n*x))*|-3*cos(n*x) + ------------- - ------------------------- - -------------------------- - ------------------------- - --------------------------- + --------------------------- + ---------------------------- + ---------------------------|*sin(n*x) | sin(cos(n*x)) 2 3 sin(cos(n*x)) 3 2 3 sin(cos(n*x)) | \ sin (cos(n*x)) sin (cos(n*x)) sin (cos(n*x)) sin (cos(n*x)) sin (cos(n*x)) /