Mister Exam

Other calculators


y=(sin^4)x/4

Derivative of y=(sin^4)x/4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4     
sin (x)*x
---------
    4    
$$\frac{x \sin^{4}{\left(x \right)}}{4}$$
  /   4     \
d |sin (x)*x|
--|---------|
dx\    4    /
$$\frac{d}{d x} \frac{x \sin^{4}{\left(x \right)}}{4}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of sine is cosine:

        The result of the chain rule is:

      The result is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   4                      
sin (x)        3          
------- + x*sin (x)*cos(x)
   4                      
$$x \sin^{3}{\left(x \right)} \cos{\left(x \right)} + \frac{\sin^{4}{\left(x \right)}}{4}$$
The second derivative [src]
   2    /    /   2           2   \                  \
sin (x)*\- x*\sin (x) - 3*cos (x)/ + 2*cos(x)*sin(x)/
$$\left(- x \left(\sin^{2}{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) + 2 \sin{\left(x \right)} \cos{\left(x \right)}\right) \sin^{2}{\left(x \right)}$$
The third derivative [src]
 /  /   2           2   \              /       2           2   \       \       
-\3*\sin (x) - 3*cos (x)/*sin(x) + 2*x*\- 3*cos (x) + 5*sin (x)/*cos(x)/*sin(x)
$$- \left(2 x \left(5 \sin^{2}{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)} + 3 \left(\sin^{2}{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}\right) \sin{\left(x \right)}$$
The graph
Derivative of y=(sin^4)x/4