Mister Exam

Derivative of y=sin^4(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4     
sin (2*x)
sin4(2x)\sin^{4}{\left(2 x \right)}
d /   4     \
--\sin (2*x)/
dx           
ddxsin4(2x)\frac{d}{d x} \sin^{4}{\left(2 x \right)}
Detail solution
  1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

  2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

  3. Then, apply the chain rule. Multiply by ddxsin(2x)\frac{d}{d x} \sin{\left(2 x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2cos(2x)2 \cos{\left(2 x \right)}

    The result of the chain rule is:

    8sin3(2x)cos(2x)8 \sin^{3}{\left(2 x \right)} \cos{\left(2 x \right)}


The answer is:

8sin3(2x)cos(2x)8 \sin^{3}{\left(2 x \right)} \cos{\left(2 x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
     3              
8*sin (2*x)*cos(2*x)
8sin3(2x)cos(2x)8 \sin^{3}{\left(2 x \right)} \cos{\left(2 x \right)}
The second derivative [src]
      2      /     2             2     \
16*sin (2*x)*\- sin (2*x) + 3*cos (2*x)/
16(sin2(2x)+3cos2(2x))sin2(2x)16 \left(- \sin^{2}{\left(2 x \right)} + 3 \cos^{2}{\left(2 x \right)}\right) \sin^{2}{\left(2 x \right)}
The third derivative [src]
   /       2             2     \                  
64*\- 5*sin (2*x) + 3*cos (2*x)/*cos(2*x)*sin(2*x)
64(5sin2(2x)+3cos2(2x))sin(2x)cos(2x)64 \left(- 5 \sin^{2}{\left(2 x \right)} + 3 \cos^{2}{\left(2 x \right)}\right) \sin{\left(2 x \right)} \cos{\left(2 x \right)}
The graph
Derivative of y=sin^4(2x)