Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$9 \sin^{8}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
7 / 2 2 \
9*sin (x)*\- sin (x) + 8*cos (x)/
$$9 \left(- \sin^{2}{\left(x \right)} + 8 \cos^{2}{\left(x \right)}\right) \sin^{7}{\left(x \right)}$$
The third derivative
[src]
6 / 2 2 \
9*sin (x)*\- 25*sin (x) + 56*cos (x)/*cos(x)
$$9 \left(- 25 \sin^{2}{\left(x \right)} + 56 \cos^{2}{\left(x \right)}\right) \sin^{6}{\left(x \right)} \cos{\left(x \right)}$$