Mister Exam

Derivative of y=(sin4x)*(cos2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(4*x)*cos(2*x)
sin(4x)cos(2x)\sin{\left(4 x \right)} \cos{\left(2 x \right)}
d                    
--(sin(4*x)*cos(2*x))
dx                   
ddxsin(4x)cos(2x)\frac{d}{d x} \sin{\left(4 x \right)} \cos{\left(2 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=sin(4x)f{\left(x \right)} = \sin{\left(4 x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=4xu = 4 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result of the chain rule is:

      4cos(4x)4 \cos{\left(4 x \right)}

    g(x)=cos(2x)g{\left(x \right)} = \cos{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2sin(2x)- 2 \sin{\left(2 x \right)}

    The result is: 2sin(2x)sin(4x)+4cos(2x)cos(4x)- 2 \sin{\left(2 x \right)} \sin{\left(4 x \right)} + 4 \cos{\left(2 x \right)} \cos{\left(4 x \right)}

  2. Now simplify:

    96sin6(x)+144sin4(x)56sin2(x)+4- 96 \sin^{6}{\left(x \right)} + 144 \sin^{4}{\left(x \right)} - 56 \sin^{2}{\left(x \right)} + 4


The answer is:

96sin6(x)+144sin4(x)56sin2(x)+4- 96 \sin^{6}{\left(x \right)} + 144 \sin^{4}{\left(x \right)} - 56 \sin^{2}{\left(x \right)} + 4

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
-2*sin(2*x)*sin(4*x) + 4*cos(2*x)*cos(4*x)
2sin(2x)sin(4x)+4cos(2x)cos(4x)- 2 \sin{\left(2 x \right)} \sin{\left(4 x \right)} + 4 \cos{\left(2 x \right)} \cos{\left(4 x \right)}
The second derivative [src]
-4*(4*cos(4*x)*sin(2*x) + 5*cos(2*x)*sin(4*x))
4(4sin(2x)cos(4x)+5sin(4x)cos(2x))- 4 \cdot \left(4 \sin{\left(2 x \right)} \cos{\left(4 x \right)} + 5 \sin{\left(4 x \right)} \cos{\left(2 x \right)}\right)
The third derivative [src]
8*(-14*cos(2*x)*cos(4*x) + 13*sin(2*x)*sin(4*x))
8(13sin(2x)sin(4x)14cos(2x)cos(4x))8 \cdot \left(13 \sin{\left(2 x \right)} \sin{\left(4 x \right)} - 14 \cos{\left(2 x \right)} \cos{\left(4 x \right)}\right)
The graph
Derivative of y=(sin4x)*(cos2x)