x sin (4) -------- cos(8*x)
/ x \ d |sin (4) | --|--------| dx\cos(8*x)/
Apply the quotient rule, which is:
and .
To find :
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
x x
sin (4)*(pi*I + log(-sin(4))) 8*sin (4)*sin(8*x)
----------------------------- + ------------------
cos(8*x) 2
cos (8*x)
/ 2 \
x | 2 128*sin (8*x) 16*(pi*I + log(-sin(4)))*sin(8*x)|
sin (4)*|64 + (pi*I + log(-sin(4))) + ------------- + ---------------------------------|
| 2 cos(8*x) |
\ cos (8*x) /
-----------------------------------------------------------------------------------------
cos(8*x)
/ / 2 \ \
| | 6*sin (8*x)| |
| 512*|5 + -----------|*sin(8*x)|
| / 2 \ 2 | 2 | |
x | 3 | 2*sin (8*x)| 24*(pi*I + log(-sin(4))) *sin(8*x) \ cos (8*x) / |
sin (4)*|(pi*I + log(-sin(4))) + 192*|1 + -----------|*(pi*I + log(-sin(4))) + ---------------------------------- + ------------------------------|
| | 2 | cos(8*x) cos(8*x) |
\ \ cos (8*x) / /
----------------------------------------------------------------------------------------------------------------------------------------------------
cos(8*x)